摘要
本文研究是线性的双层多目标决策.根据线性规划的对偶理论证明了双层多目标决策的可行集的连通性;利用s*-最优均衡解的概念,求得双层多目标规划的偏好满意解;最后,我们得到了满意解的有效性,并在极点得到.
This paper focuses on the linear bi-level multi-objective decision-making. According to the dual theory of linear programming,the feasible region of linear bilevel multi-objective programming is proved to be connected.Preferred satisfied solution is obtained,by using the concept of s~*-optimal equilibrium solution.Lastly,we show that preferred satisfied solution is efficient and achievable at one of extreme points.
出处
《应用数学与计算数学学报》
2007年第2期27-34,共8页
Communication on Applied Mathematics and Computation
关键词
双层多目标
s*-最优均衡解
有效解
弱有效解
linear bilevel multi-objective
s~*-optimal equilibrium solution
efficient solution