摘要
得到正方形上一类Sierpinski地毯En的等价构造,即为一类六边形上的Sierpinski地毯Qn;通过在Qn上定义一个质量分布,由质量分布原理得到下界,从而完全确定了En的Hausdorff测度的准确值.
It is proved that the Sierpinski carpet En is equivalent to the set Qn which is a Sierpinski carpet defined on hexagon.Then a mass distribution on Qn is defined,and the lower bound about the Hausdorff measure of Qn is obtained using a certain of mass distribution.Therefore,the exact value of Hausdorff measure of En is given.
出处
《郑州大学学报(理学版)》
CAS
2007年第3期40-44,共5页
Journal of Zhengzhou University:Natural Science Edition