摘要
在动力学系统的轨道灵敏度概念启发下,结合动力学系统的吸引域与渐近稳定性知识,提出了一种可用于辅助判断电力系统暂态稳定性的新理论:初始点是否落在自治非线性动力学系统的某渐近稳定平衡点吸引域内可由其线性化系统平衡点的渐近稳定性来确定,而线性系统有许多“良好”的性质可以利用。文中定义了一个正的常数为该线性系统的加速因了,可用来加快该线性系统的收敛或发散速度,以减少分析电力系统暂态稳定性时对系统进行仿真的时间。该理论在单机无穷大系统和多机电力系统的应用结果表明了其正确性和可行性。
Inspired by the concept of trajectory sensitivity of dynamic systems and based on the knowledge of domain of attraction and asymptotic stability of dynamic systems, the authors proposed a new principle that could be used to aid in judging power system transient stability. It could be known from this principle that whether an initial point lied in the domain of attraction of an equilibrium point of autonomous nonlinear dynamic systems or not was able to be decided by the asymptotic stability of equilibrium p...
出处
《电网技术》
EI
CSCD
北大核心
2005年第22期40-44,共5页
Power System Technology
基金
国家自然科学基金资助项目(50307007)。~~
关键词
电力系统
暂态稳定
吸引域
轨道灵敏度
非线性系统
线性系统
Power system
Transient stability
Domain of attraction
Trajectory sensitivity
Nonlinear system
Linear system