期刊文献+

不同应力分量下广义开尔文模型粘性系数探讨 被引量:4

Generalized Kelvin Model under Different Stress State
下载PDF
导出
摘要 对不同应力分量下的广义开尔文模型应力应变关系进行了研究,推导了在不同应力分量下的广义开尔文模型的粘性应变增量计算式;通过对这些粘性应变增量计算式的比较分析,得到结论:对于线性粘弹性模型,当应力张量引起粘性变形的规律与应力偏量和球应力分别引起粘性变形的规律相同时,它们的系数满足关系式Ek/ηk=Gsk/ηsk=Kmk/ηmk;否则,这个关系式不成立。现有文献采用应力张量表示的粘性变形有限元计算式隐含假定了球应力与应力偏量产生的粘性变形规律相同。对于复杂的工程材料而言,这种假定并不总是合适的。这在工程问题粘性分析时值得注意。 The generalized Kelvin model stress-strain relations under different stress states were analyzed The vis-coelastic strain increment expression was deduced Comparing with these viscoelastic strain increment expressions, it is concluded that for linear viscoelastic model, if the viscoelastic deformation law under different stress states, such as stress tensor, deviation stress and bulk stress, are the same, their parameters yield as Ek/ηk=Gsk/ηsk= Kmk/ηmk. The viscoelastic deformation law due to deviation stress gets the same as the bulk stress viscoelastic deformation law when the viscoelastic deformation FEM formula is expressed by stress tensor as in the references, which does not hold for complicated engineering materials.
机构地区 河海大学
出处 《应用力学学报》 EI CAS CSCD 北大核心 2007年第4期588-591,共4页 Chinese Journal of Applied Mechanics
基金 国家重点基础研究发展规划项目(2002CB412707) 国家自然科学基金重点项目(50539010) 国家自然科学基金项目(50579010)
关键词 线性广义开尔文模型 应力张量 应力偏量 球应力 粘性系数 linear generalized Kelvin model,stress tensor,deviation stress,bulk stress,visco-parameter.
  • 相关文献

参考文献6

  • 1[1]Owen D R J,Hinton E.Finite Elements in Plasticity[M].Swansea U K:Pineridge Press,1980:95-117. 被引量:1
  • 2沈振中,徐志英,雒翠.三峡大坝坝基粘弹性应力场与渗流场耦合分析[J].工程力学,2000,17(1):105-113. 被引量:18
  • 3[3]任青文.非线性有限元[M].南京:河海大学,2001:37-41 被引量:2
  • 4孙均 汪炳铿.地下结构有限元法解析[M].上海:同济大学出版社,1988.. 被引量:5
  • 5朱伯芳著..有限单元法原理与应用 第2版[M].北京:中国水利水电出版社,1979:607.
  • 6卓家寿编..非线性固体力学基础[M].北京:中国水利水电出版社,1996:127.

二级参考文献10

共引文献22

同被引文献55

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部