期刊文献+

基于不平衡数据的非肾病水平蛋白尿的膜性肾病预后模型建立

Establishment of a prognostic model for non-nephrotic membranous nephropathy based on unbalanced data
原文传递
导出
摘要 目的探索基于不平衡数据构建预测非肾病水平蛋白尿的膜性肾病预后的机器学习模型。方法回顾性分析山西省人民医院2018年1月至2021年12月肾活检诊断为非肾病水平蛋白尿的膜性肾病患者的临床和病理资料。基于logistic回归、支持向量机(SVM)和轻量梯度提升(lightGBM)3种机器学习算法构建预测模型。采用混合采样技术处理不平衡数据,使用受试者工作特征曲线下面积(AUC)评估模型预测性能,运用Shapley加法解释(SHAP)对最佳性能模型的结果进行解释。结果共纳入148例患者,男84例,女64例,年龄(47.2±12.5)岁,随访时间[M(Q_(1),Q_(3))]14(7,20)个月。23例(15.5%)患者发生肾脏终点事件。SVM模型的AUC值最高(0.868,95%CI:0.813~0.925),其次为logistic回归(AUC:0.865,95%CI:0.755~0.899)和lightGBM(AUC:0.791,95%CI:0.690~0.882)。基于随机森林的特征递归消除交叉验证(RFECV)方法和SVM模型的SHAP图显示,免疫组化IgG、血清总蛋白(TP)、血清抗磷脂酶A2受体抗体(anti-PLA2R)、血氯、D-二聚体是影响非肾病水平蛋白尿的膜性肾病预后的危险因素,其中免疫组化IgG、anti-PLA2R、D-二聚体水平越高,患者达到肾脏终点事件的风险越高。结论本研究建立的SVM模型可有效预测非肾病水平蛋白尿的膜性肾病的预后,为早期识别高危患者及精准治疗提供了新方法。 Objective To explore the construction of a machine learning model based on unbalanced data to predict the progression of non-nephrotic membranous nephropathy.Methods The clinical and pathological data of patients diagnosed with non-nephrotic membranous nephropathy by renal biopsy in Shanxi People′s Hospital from January 2018 to December 2021 were retrospectively analyzed.The prediction models were constructed based on logistic regression,support vector machine(SVM)and light gradient boosting machine(lightGBM),respectively.The mixed sampling technology was used to process the unbalanced data,and the area under the receiver operating characteristic curve(AUC)was used to evaluate the predictive performance of the models.Finally,Shapley additive explanation(SHAP)was used to interpret the results of the optimal prediction model.Results A total of 148 patients were included in the study,including 84 males and 64 females,with a mean age of(47.2±12.5)years.The follow-up time[M(Q_(1),Q_(3))]was 14(7,20)months.Twenty-three patients(15.5%)achieved the renal end-point event in the study.The SVM model had the highest AUC(0.868,95%CI:0.813-0.925),followed by logistic regression(AUC=0.865,95%CI:0.755-0.899)and lightGBM(AUC=0.791,95%CI:0.690-0.882).The feature recursive elimination cross validation(RFECV)method based on random forest(RF)and the SHAP plot based on the SVM model showed that immunohistochemistry IgG,total protein(TP),anti-phospholipase A2 receptor(anti-PLA2R),blood chloride and D-Dimer were risk factors affecting the progress of non-nephrotic membranous nephropathy.Moreover,patients with high immunohistochemistry IgG,anti-PLA2R and D-Dimer had an increased risk of achieving the renal end-point event.Conclusion The SVM model established in this study can effectively predict the progress of non-nephrotic membranous nephropathy,and provide a new method for the early identification of high-risk patients and precision therapy.
作者 刘艳琴 芦园月 李旺鑫 吴智娟 张芳 王艳茹 李荣山 周晓霜 Liu Yanqin;Lu Yuanyue;Li Wangxing;Wu Zhijuan;Zhang Fang;Wang Yanru;Li Rongshan;Zhou Xiaoshuang(Big Data Center of Kidney Disease,Shanxi Provincial People′s Hospital,Taiyuan 030012,China;the Fifth Clinical Medical College of Shanxi Medical University,Taiyuan 030001,China)
出处 《中华医学杂志》 CAS CSCD 北大核心 2023年第18期1386-1392,共7页 National Medical Journal of China
基金 山西省卫生健康委员会重点攻关项目(2021XM27)
关键词 肾小球肾炎 膜性 非肾病水平蛋白尿 预后 机器学习 Glomerulonephritis,membranous Non-nephrotic proteinuria Prognosis Machine learning
  • 相关文献

参考文献2

二级参考文献21

  • 1何强,陈江华.脓毒症的急性肾损伤[J].中华肾脏病杂志,2006,22(11):655-657. 被引量:38
  • 2Beck LH Jr, Bonegio RG, Lambeau G, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy[ J]. N Engl J Med ,2009,361 (1) :11- 21. DOI: 10. 1056/NEJMoa0810457. 被引量:1
  • 3Debiec H, Ronco P. PLA2R autoantibodies and PLA2R glomerular deposits in membranous nephropathy [ J 1. N Engl J Med,2011,364 (7) :689-690. DOI : 10. 1056/NEJMc1011678. 被引量:1
  • 4Larsen CP, Messias NC, Silva FG, et al. Determination of primary versus secondary membranous glomerulopathy utilizing phospholipase A2 receptor staining in renal biopsies [ J ]. Mod Pathol,2013,26(5) :709-715. DOI: 10. 1038/modpathol. 2012. 207. 被引量:1
  • 5Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate [ J 1. Ann Intern Med,2009,150 (9) :604-612. 被引量:1
  • 6KDIGO Clinical Practice Guideline for Glomerulonephfitis. Chapter 7 : Idiopathic membranous nephropathy [ J ]. Kidney Int Suppl, 2012, 2(2) :186-197. 被引量:1
  • 7Ruggenenti P, Cravedi P, Remuzzi G. Latest treatment strategies for membranous nephropathy [ J ]. Expert Opin Pharmacother, 2007,8(18) : 3159-3171. 被引量:1
  • 8Nangaku M, Shankland SJ, Couser WG. Cellular response to injury in membranous nephropathy[ J]. J Am Soe Nephrel,2005, 16(5) :1195-1204. 被引量:1
  • 9Cravedi P, Ruggenenti P, Remuzzi G. Circulating anti-PLA2R autoantibodies to monitor immunological activity in membranous nephropathy[ J]. J Am Soc Nephrol, 2011,22 (8) : 1400-1402. DOI: 10. 1681/ASN. 2011060610. 被引量:1
  • 10Hoxha E, KneiBler U, Stege G, et al. Enhanced expression of the M-type phospholipase A2 receptor in glomeruli correlates with serum receptor antibodies in primary membranous nephropathy [ J]. Kidney Int, 2012, 82 ( 7 ) : 797-804. DOI: 10. 1038/ki. 2012. 209. 被引量:1

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部