期刊文献+

Dynamic study of infiltration rate for soils with varying degrees of degradation by water erosion 被引量:4

原文传递
导出
摘要 Ultisols,widely distributed in tropical and subtropical areas of south China,are suffering from serious water erosion,however,slope hydrological process for Ultisols under different erosional degradation levels in field condition has been scarcely investigated.Field rainfall simulation at two rainfall intensities (120 and 60 mm/h) were performed on pre-wetted Ultisols with four erosion degrees (non,moderate,severe and very-severe),and the hydrological processes of these soils were determined.The variation of soil infiltration was contributed by the interaction of erosion degree and rainfall intensity (p < 0.05).In most cases,time to incipient runoff,the decay coefficient,steady state infiltration rate,and their variability were larger at the high rainfall intensity,accelerating by the increasing erosion severity.Despite rainfall intensity,the infiltration process of Ultisols was also significantly influenced by mean weight diameter of aggregates at the field moisture content,soil organic carbon and particle size distribution (R2 > 30%,p < 0.05).The temporal erodibility of surface soil and soil detachment rate were significantly and negatively correlated with infiltration rate (r <-0.32,p < 0.05),but less significant correlation was observed between sediment concentration and infiltration rate for most soils,especially at the high rainfall intensity.The variation of surface texture and soil compactness generated by erosion degradation was the intrinsic predominant factors for the change of infiltration process of Ultisols.The obtained results will facilitate the understanding of hydrological process for degraded lands,and provide useful knowledge in managing crop irrigation and soil erosion.
出处 《International Soil and Water Conservation Research》 SCIE CSCD 2019年第2期167-175,共9页 国际水土保持研究(英文)
基金 This research was supported by the National Key Research and Development Program of China(2017YFC0505401) the National Natural Science Foundation of China(41807065).
  • 相关文献

共引文献2

同被引文献75

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部