摘要
Herein,non-carbonized wood-based electrodes and separators with well-aligned channels and excellent mechanical properties are developed for supercapacitors.To enhance the conductivity and boost the capacitance,Ti_(3)C_(2)(MXene)nanosheets with high electrical conductivity and excellent electrochemical activity are loaded into the wood cells via self-assembly triggered by fast evaporating water in Ti_(3)C_(2)suspension.By the assistance of positive charged polydopamine microspheres with large surface area,the self-restacking of Ti_(3)C_(2)nanosheets can be avoided and the high mass loading(50 wt%)can be achieved due to the extra driving force for Ti_(3)C_(2)absorption.Benefiting from the conductive Ti_(3)C_(2)nanosheets with massive active sites and the multiple well-aligned channels in wood with efficient transportation pathways for charge carriers,the as-designed free-standing electrode shows a large areal capacitance of 1060 mF cm^(-2)at 0.5 mA cm^(-2)and high capacitance retention of 67%at 10 mA cm^(-2).Also,this electrode is highly size-customizable,showing a good ability to be industrially processed into various shapes and dimensions.Furthermore,an all-wood based supercapacitor with Ti_(3)C_(2)/wood composites as two layers of electrodes and a wood slice as the separator is fabricated,presenting a high energy density of 10.5μW h cm^(-2)at 389.9μW cm^(-2).
基金
the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(20KJB220008)
Start-up Funds for Scientific Research at the Nanjing Forestry University(163020126).