摘要
基于界面保护修饰法,制备了一侧为亲水的氨基(-NH_(2))、另一侧为疏水的氟碳链的两亲性纳米颗粒SiO_(2)/APTES/PFOA.采用红外光谱仪、激光共聚焦显微镜、表面张力仪、动态泡沫分析仪和扫描电镜对两亲性颗粒的化学组成、表面结构、表面活性、泡沫性能和石蜡微球的表面形貌进行分析表征.结果表明,随着氨丙基三乙氧基硅烷(APTES)浓度的提高,SiO_(2)/APTES改性颗粒在石蜡液滴表面吸附得更紧密,对应制备的两亲性颗粒具有更高的表面活性.两亲性颗粒分散液的浓度为0.6%时其表面张力为33.7 mN/m,具备优良的表面活性.当浓度达到0.4%时,两亲性颗粒能够有效抑制气泡的破裂和液膜排液,制备的泡沫具有极好的稳定性.
Based on the interface protection modification method,amphiphilic SiO_(2)/APTES/PFOA nanoparticles with hydrophilic amino group(—NH_(2))at one side and hydrophobic fluorocarbon chain at the other side are prepared.The chemical composition,surface structure,surface activity and foam properties of the prepared nanoparticles as well as surface morphology of paraffin microspheres are characterized by infrared spectrometer,laser confocal microscope,surface tensiometer,dynamic foam analyzer and scanning electron microscope.The results show that with the increasing concentration of aminopropyl triethoxysilane(APTES),the modified SiO_(2)/APTES particles get adsorbed more tightly on the surface of paraffin droplets,and the corresponding amphiphilic particles prepared own higher surface activity.The surface tension of the particles can reach 33.7 m N·m^(-1) when the concentration of the particles in dispersion solution is 0.6%,showing an excellent surface activity.If the concentration reaches 0.4%,the amphiphilic particles can inhibit effectively the bubble collapse and liquid film drainage,and the prepared foam from them has excellent stability.
作者
王刚
邱俊彬
朱佳平
谭华
侯兆凯
WANG Gang;QIU Jun-bin;ZHU Jia-ping;TAN Hua;HOU Zhao-kai(School of Chemistry,Guangdong University of Petrochemical Technology,Maoming 525000,China;Guangdong Research Center for Unconventional Energy Engineering Technology,Maoming 525000,China;Key Laboratory for EOR Technology of Ministry of Education,Northeast Petroleum University,Daqing 163318,China)
出处
《现代化工》
CAS
CSCD
北大核心
2020年第S01期88-91,共4页
Modern Chemical Industry
基金
国家自然科学基金重大项目(51490650)
广东省非常规能源工程技术研究中心开放基金项目(GF2018B007)
广东石油化工学院人才引进项目(518161)
关键词
两亲性颗粒
自组装
表面活性
泡沫稳定性
amphiphilic particles
self-assembly
surface activity
foam stability