摘要
为了将晶界添加氢化镝DyH_(x)制备耐高温烧结钕铁硼应用于生产实践,本文对比了在无镝基材中分别通过熔炼添加、晶界添加0.5wt.%的Dy所制备得到磁体的磁性能、热稳定性,对晶界添加磁体的均匀性进行了验证分析,对晶界添加DyH_(x)提升矫顽力H_(cj)和热稳定性的机理进行了研究。结果表明:室温20℃下,晶界添加相比熔炼添加的磁体其H_(cj)提高0.32 kOe,B_(r)提高0.09 kGs,热损降低21%以上;晶界添加磁体的剩磁B_(r)的均匀性、不可逆磁通损失H_(irr)的均匀性均与单合金熔炼工艺无差别;晶界添加磁体矫顽力以及热稳定性的提升主要归因于D_(y)元素直接利用率的提高和硬磁的(Nd,Dy)-Fe-B壳层的形成。
In order to apply the method of adding DyH_(x) at grain boundaries to produce high temperature resistance sintered NdFeB magnet on the production line,this work compared the magnetic properties and thermal stability of magnets prepared by melting adding and grain boundaries adding the same amount of 0.5wt.%Dy at a dysprosium-free substrates,and analyzed the uniformity of the DyH_(x) grain boundaries added magnet.The mechanism of the increase of H_(cj) and the improvement of thermal stability by adding DyH_(x) to grain boundary was also studied.The results show that when at room temperature of 20℃and compared with the melting adding magnet,the grain boundaries adding magnet has a H_(cj) increased of 0.32 kOe and B_(r) increased of 0.09 kGs,and the H_(irr) decreased more than 21%.The uniformity of the grain boundaries adding magnet is the same as the single alloy melting processes magnet when consider the standard deviation of residual magnetic B_(r) and irreversible magnetic flux loss H_(irr).The improvement of coercive force H_(cj) and thermal stability of the grain boundaries adding magnets is mainly attributed to the increase of the direct utilization rate of Dy elements and the formation of hard magnetic(Nd,Dy)-Fe-B shells.
作者
申明辉
胡贤君
卢其云
SHEN Minghui;HU Xianjun;LU Qiyun(Guangdong Shengyuan Permanent Magnetic Materials Co.,Ltd,Heyuan 517000,China;Heyuan Guangsheng Guangke Rare Earth Permanent Magnet Innovation Institute,Heyuan 517000,China)
出处
《功能材料与器件学报》
CAS
2024年第5期274-280,共7页
Journal of Functional Materials and Devices
基金
河源市科技计划项目-支持稀土产业高质量发展专项-《稀土永磁材料强基及产业化集成创新》(No.221125091604109)
关键词
烧结钕铁硼
晶界添加
耐高温
热稳定性
Sintered NdFeB
Grain Boundary Addition
High Temperature Resistance
Thermal Stability