期刊文献+

基于关联规则的新能源车交通事故致因分析

Causal Analysis of New Energy Vehicle Traffic Accidents Based on Association Rules
下载PDF
导出
摘要 随着新能源车市场保有量的增加,由驾驶新能源车导致的交通事故也逐渐增多。以长沙市为例,对新能源车城市道路交通事故致因进行关联挖掘分析,运用Apriori算法挖掘出了10条交通事故因素强关联关系,对关联规则进行了深入的分析,提出了有针对性的建议,弥补了当前对新能源车交通事故研究不足的缺陷,为新能源车行车安全提供了理论支持,也为交通管理部门提供决策支持。 With the increase in the market share of new energy vehicles,traffic accidents caused by driving new energy vehicles have gradually attracted attention.Taken Changsha City as an example,correlation mining and analysis on the causes of urban road traffic accidents of new energy vehicle are carried out.Apriori algorithm is used to mine 10 strong traffic accident factor correlation relationships,and the association rules are analyzed in depth.Targeted suggestions are proposed to make up for the shortcomings of current research on new energy vehicle traffic accidents.The results provide theoretical support for the safety of new energy vehicle driving and offer decision-making support for the traffic management departments.
作者 冯晓锋 徐硕 袁军 FENG Xiaofeng;XU Shuo;YUAN Jun(Department of Traffic Management,Hunan Police Academy,Changsha 410138,China;Traffic Police Detachment of Changsha Public Security Bureau,Changsha 410006,China)
出处 《中国人民公安大学学报(自然科学版)》 2024年第1期37-43,共7页 Journal of People’s Public Security University of China(Science and Technology)
基金 湖南省社科评审委项目(XSP2023FXC025) 湖南省教育厅重点项目(20A173) 长沙市自然科学基金(kq2208063) 教育部协同育人项目(220705329304351)
关键词 道路交通安全 新能源车 事故致因分析 Apriori关联规则挖掘算法 road traffic safety new energy vehicle accident causation analysis Apriori association rules mining algorithm
  • 相关文献

参考文献14

二级参考文献96

共引文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部