期刊文献+

几类确定型网络模型的最多叶子生成树数目和最大独立集

On the number of maximum leaf spanning trees and maximumindependent sets in several deterministic networks
下载PDF
导出
摘要 复杂网络已经被证实有着广泛的实际应用,帮助人们揭示了很多复杂系统中的普世规律,如无标度特征.文章介绍几个典型的确定型网络模型,同时,学习这些模型中的一些拓扑结构参数,如最多叶子生成树数目,准确地解析出了相应参数的数值表达式.结果表明,这些拓扑参数可以很好地区分网络拓扑结构之间的差异性. Complex networks have been proven useful in a wide range of real-world applications.As a result,this helps us to unveil some rules,for instance,scale-free feature,popularly observed in a great number of complex systems.In this paper,we will introduce several typical deterministic networked models and then study some topological structural parameters such as,the total number of maximum leaf spanning trees.Finally,we analytically derive the corresponding closed-form solutions.The results show that topological parameters considered here can be able to distinguish the underlying structures of networked models.
作者 马飞 姚兵 MA Fei;YAO Bing(School of Electronics Engineering and Computer Science,Peking University,Beijing 100871,China;College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
出处 《广州大学学报(自然科学版)》 CAS 2020年第1期34-41,共8页 Journal of Guangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(61662066)
关键词 复杂网络 生成树 独立集 complex networks spanning tree independent set
  • 相关文献

参考文献3

二级参考文献18

  • 1梁洪振,姚洪兴,张学兵.一类无标度网络的特征分析[J].复杂系统与复杂性科学,2005,2(3):67-71. 被引量:5
  • 2王林,戴冠中.复杂网络的度分布研究[J].西北工业大学学报,2006,24(4):405-409. 被引量:66
  • 3BARABASI A L, ALBERT R. Emergence of scale-free networks [J]. Science, 1999,286: 509 -512. 被引量:1
  • 4MACDONALD P J, ALMAAS E, BARABASI A L. Minimum spanning trees of weighted scale-free networks [J] . Europhys Lett, 2005, 72 (2): 308 -314. 被引量:1
  • 5KATONA Z. Levels of a scale-free tree [J]. Random Structures and Algorithms, 2006, 29 (2): 194 - 207. 被引量:1
  • 6KIM D H, NOH J D, JEONG H. Scale-free trees: The skeletons of complex networks [J]. Physical Review E, 2004, 70( 4) : 046126. 被引量:1
  • 7ZHANG Z Z, WU B, COMELLAS F. The number of spanning trees in Apollonian networks [J]. Discrete applied mathematics, 2014, 169: 206 -213. 被引量:1
  • 8COMELLAS F, FERTIN G, RASPAUD A. Recursive graphs with small-world scale-free properties [J]. Physical Review E, 2004, 69: 037104. 被引量:1
  • 9ZHANG Z Z, ZHOU S G, FANG L J, et al. Maximal planar scale-free Sierpinski networks with small-world effect and power-law strength-degree correlation[J], Europhysics Letters, 2007, 79: 38007. 被引量:1
  • 10YAO B, YAO M, CHEN X E, et al. Research on edgegrowing models related with scale-free small-world networks [J]. Applied Mechanics and Materials, 2014: 2444 -2448. 被引量:1

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部