期刊文献+

水系锌碘电池穿梭效应的改进策略研究进展 被引量:1

Research Progress on Improvement for Shuttle Effect of Aqueous Zinc Iodine Battery
原文传递
导出
摘要 水系锌碘电池因其高理论比容量、高能量密度、优异的倍率性能、丰富且低廉的原料和高安全性等特点,而被认为是未来电能存储领域最具前景的候选储能器件之一。然而,多碘离子的穿梭效应严重影响其自放电性能、Coulombic效率和循环寿命,进而限制了其大规模应用。首先介绍了水系锌碘电池的结构、储能机理及其穿梭效应产生的原因,随后从正极、电解液和隔膜3个方面详细综述了水系锌碘电池穿梭效应的抑制策略,最后总结了当前水系锌碘电池存在的问题并提出了展望,以期为加快推进水系锌碘电池产业化提供借鉴。 Aqueous Zn iodine battery(AZIDB) is recognized as one of the most promising energy storage devices in the future electric power storage area due to its high theoretical specific capacity, superior energy density, good rate capability, abundant and low-cost of raw materials and high safety. However, the shuttle effect of polyiodide seriously increases the self-discharge current,decreases the Coulombic efficiency and shortens the cycle life of AZIDB, further limiting the large-scale application. In this review,the configuration of AZIDB, the corresponding energy storage mechanism and the reasons of shuttle effect were represented. The suppression strategies of shuttle effect in AZIDB from cathode, electrolyte and separator aspects were described. In addition, we summarized the current problems and shared thoughts on the future research development in AZIDBs to provide a reference for promoting the industrialization of AZIDBs.
作者 江和栋 孙玲玲 朱宏林 黄丹丹 王艳香 李家科 郭平春 朱华 JIANG Hedong;SUN Lingling;ZHU Honglin;HUANG Dandan;WANG Yanxiang;LI Jiake;GUO Pingchun;ZHU Hua(School of Materials Science and Engineering,Jingdezhen Ceramic University,Jingdezhen 333403,Jiangxi,China;School of Mechanical and Electronic Engineering,Jingdezhen Ceramic University,Jingdezhen 333403,Jiangxi,China)
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2023年第1期235-247,共13页 Journal of The Chinese Ceramic Society
基金 江西省教育厅科学技术研究项目(GJJ211341) 景德镇陶瓷大学博士启动金(102-01003002060)。
关键词 水系锌碘电池 循环稳定性 穿梭效应 改进策略 aqueous zinc iodine battery cycle stability shuttle effect optimization strategy
  • 相关文献

参考文献7

二级参考文献31

  • 1陶斌武,刘建华,李松梅,赵亮.水相锌二次电池正极材料V_2O_5/C的电化学性能研究[J].物理化学学报,2005,21(3):338-342. 被引量:5
  • 2TENG F, HAG H Z, CHEN C H, et al. Hydrothermal synthesis of plate-like carbon-coated Li3V2(PO4)3 and its low temperature performance for high power lithium ion batteries [J]. Electrochim Acta, 2013, 91: 4349. 被引量:1
  • 3YAO J W, WU F, QIU X P, et al. Effect of CeO2-coating on the electrochemical performances of LiFePOdC cathode material [J]. Eleetrochim Acta, 2011, 56: 5587-5592. 被引量:1
  • 4RUI X H, LI C, CHEN C H. Synthesis and characterization of carbon-coated Li3V2(PO4)3 cathode materials with different carbon sources [J]. Electrochim Acta, 2009, 54: 3374-3380. 被引量:1
  • 5SATO M, OHKAWA H, YOSHIDA K, et al. Enhancement of discharge capacity of Li3V2(PO4)3 by stabilizing the orthorhombic phase at room temperature [J]. Solid State Ionics, 2000, 135: 137-142. 被引量:1
  • 6XIA Y, ZHANG W, HUANG H, et al. Synthesis and electrochemical properties of Nb-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries [J]. Mater Sci Eng B, 2011, 176: 633-639. 被引量:1
  • 7CUI Y, ZHAO X L, GUO R S. Improved electrochemical performance of Lao,7Sro.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process [J]. Electrochim Acta, 2010, 55: 922-926. 被引量:1
  • 8AN J, LIU C W, GUO R S, et al. Ti3SiCz modified LiFePO4/C cathode materials with improved electrochemical performance [J]. J Eleetrochem Soc, 2012, 159( 12): A2038-A2042. 被引量:1
  • 9ZHANG L, WANG X L, TU J P, et al. Synthesis and electrochemical performances of Li3V2(PO4)3/(Ag+C) composite cathode [J]. J Power Sources, 2010, 195: 5057-5061. 被引量:1
  • 10ZHA1 J, ZHAO M S, WANG Y Z. Effect of A1203-coaXing on the electrochemical performances of Li3V2(PO4)3/C cathode material [J]. J Solid State Electrochem, 2014, 18: 2857-2862. 被引量:1

共引文献14

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部