期刊文献+

GaN压电半导体杆的非线性动态响应研究

Study on Nonlinear Dynamic Response of GaN Piezoelectric Semiconductor Rod
下载PDF
导出
摘要 利用有限元分析方法,研究了p型GaN压电半导体杆在简谐力作用下的拉伸振动问题,得到了位移、电势和空穴浓度非线性动态响应的数值解,并分析了简谐力对p型GaN压电半导体杆力电耦合性能的调控作用。研究结果表明,简谐力显著地影响压电半导体杆内力电场的分布情况:由于电流密度中的电非线性项,电场和空穴浓度的分布失去对称性或反对称性;力电场在简谐力驱动下表现为周期性变化,但空穴浓度的动态响应表现为明显的非对称波动。 The finite element method was used to study the problem of tensile vibration of p-type GaN piezoelectric semiconductor rod under the action of simple harmonic force.Numerical solutions for the nonlinear dynamic responses of displacement,electric potential and hole concentration were obtained.The modulating effect of simple harmonic force on p-type GaN piezoelectric semiconductor rod was analyzed.The results show that the simple harmonic force significantly affects the distribution of physical fields in the rod.The distributions of the electric field and hole concentration lose their symmetry or anti-symmetry due to the electrically nonlinear term in the current density.The electric fields exhibit periodic variations driven by the simple harmonic force.However,the dynamic response of hole concentration exhibits significant asymmetric fluctuations.
作者 谭宁 马泽龙 张巧云 TAN Ning;MA Zelong;ZHANG Qiaoyun(School of Mechanics and Safety Engineering,Zhengzhou University,Zhengzhou 450001,CHN)
出处 《半导体光电》 CAS 北大核心 2023年第1期64-69,共6页 Semiconductor Optoelectronics
基金 国家自然科学基金项目(11702251) 河南省博士后科研基金项目(202003091) 河南省高等学校重点科研项目(22A130008)
关键词 压电半导体杆 非线性 动态拉伸 多场耦合 piezoelectric semiconductor rod nonlinearity dynamic stretching multi-field coupling
  • 相关文献

参考文献1

二级参考文献33

  • 1Auld, B.A., 1973. Acoustic Fields and Waves in Solids. John Wiley and Sons, New York, p.357-382. 被引量:1
  • 2Biiyiikk6se, S., Hem~ndez-Minguez, A., Vratzov, B., et al.,2014. High-frequency acoustic charge transport in GaAs nanowires. Nanotechnology, 25(13):135204. http://dx.doi.org/10.1088/0957-4484/25/13/135204. 被引量:1
  • 3de Lorenzi, H.G., Tiersten, H.F., 1975. On the interaction of the electromagnetic field with heat conducting deforma- ble semiconductors. Journal of Mathematical Physics, 16(4):938-957. http://dx.doi.org/10.1063/1.522600. 被引量:1
  • 4Ghosh, S.K., 2006. Acoustic wave amplification in ion- implanted piezoelectric semiconductor, lndian Journal of Pure and Applied Physics, 44(2): 183-187. 被引量:1
  • 5Graton, O., Poulin-Vittrant, G., Hue, L.T.H., et al., 2013. A strategy of modelling and simulation of electromechani- cal conversion in ZnO nanowires. Advances in Applied Ceramics, 112(2):85-90. http://dx.doi.org/10.1179/1743676112Y.0000000029. 被引量:1
  • 6Hiralal, P., Unalan, H.E., Amaratunga, G.A., 2012. Nan- owires for energy generation. Nanotechnology, 23(19): 194002. http://dx.doi.org/10.1088/0957-4484/23/19/194002. 被引量:1
  • 7Hu, Y.T., Zeng, Y., Yang, J.S., 2007. A mode III crack in a piezoelectric semiconductor of crystals with 6ram sym- metry. International Journal of Solids and Structures, 44(11-12):3928-3938. http ://dx.doi.org/10.1016/j.ij solstr.2006.10.033. 被引量:1
  • 8Hutson, A.R., White, D.L., 1962. Elastic wave propagation in piezoelectric semiconductors. Journal of Applied Phys- ics, 33(1):40-47. http://dx.doi.org/10.1063/1.1728525. 被引量:1
  • 9Kumar, B., Kim, S.W., 2012. Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy, 1(3):342-355. http ://dx.doi.org/10.1016/j.nanoen.2012.02.001. 被引量:1
  • 10Lee, P.C.Y., Liu, N.H., Ballato, A., 2004. Thickness vibrations of a piezoelectric plate with dissipation. IEEE Transactions on Ultrasonics, Ferroelectrics and Fre- quency Control, 51(1):52-62. http://dx.doi.org/10.1109/TUFFC.2004.1268467. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部