期刊文献+

基于卷积神经网络的高分辨率遥感影像建筑物场景识别 被引量:5

Building scene recognition based on convolutional neural network using high resolution remote sensing image
下载PDF
导出
摘要 遥感影像建筑物信息提取对于自然资源监测、土地利用现状调查、生态修复等具有重要的现实意义。但在实际应用中,建筑物提取面临"小目标""有遮挡"的问题,导致识别效果不理想。本文基于高分辨率遥感影像,提出运用多示例卷积神经网络的方法对建筑物场景进行识别。试验表明,多示例卷积神经网络相较于经典的卷积神经网络对建筑物场景有更好的识别效果,尤其是"小目标""有遮挡"的建筑物场景,识别效果有显著的提升。 Extracting building information from remote sensing imagery plays a significant role in monitoring natural resources,investigating the status of land use and ecological restoration,etc.But in practical applications,building extraction faces the problem of"small target","covered",leading to an unsatisfactory recognition result.A multi-instance convolutional neural network method was developed for building scene recognition with high-resolution remote sensing imagery in this study.The results illustrate that the multi-instance convolutional neural network has a better recognition effect than that of the classical convolutional neural network on the building scene,especially for the"small target","covered"building scene.
作者 刘强 解加粉 陈建忠 孙如瑶 赵中飞 LIU Qiang;XIE Jiafen;CHEN Jianzhong;SUN Ruyao;ZHAO Zhongfei(Shandong Provincial Institute of Land Surveying and Mapping,Jinan 250000,China)
出处 《测绘通报》 CSCD 北大核心 2021年第S01期124-128,182,共6页 Bulletin of Surveying and Mapping
关键词 多示例卷积神经网络 建筑物场景识别 高分辨率遥感影像 multi-instance convolutional neural network building scene recognition high-resolution remote sensing image
  • 相关文献

参考文献3

二级参考文献34

  • 1李小文.汶川震灾中遥感的应急与反思[J].遥感学报,2008,12(6). 被引量:3
  • 2Xu H, Wang X, Xiao G. A remote sensing and GIS integrated study on urbanization with its impact on arable lands: Fuqing city, Fujian province, China [ J ]. Land Degradation & Development, 2000,11(4): 301 -314. 被引量:1
  • 3Gong P, Howarth P J. The use of structural information for improving land-cover classification accuracies at the rural-urban fringe [ J ].Photogrammetric Engineering and Remote Sensing, 1990,56 ( 1 ):67 - 73. 被引量:1
  • 4Ridd M K. Exploring a VIS (vegetation-impervious surface-soil )model for urban ecosystem analysis through remote sensing:comparative anatomy for cities[J]. International Journal of Remote Sensing, 1995,16(12): 2165 -2185. 被引量:1
  • 5Masek J G, Lindsay F E, Coward S N. Dynamics of urban growth in Washington DC metropolitan area, 1973-1996, from Landsat observations [ J ]. International Journal of Remote Sensing, 2000,21 ( 18 ) :3473 - 3486. 被引量:1
  • 6Zha Y, Gao J, Ni S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery [ J ].International Journal of Remote Sensing, 2003,24( 3 ): 583 - 594. 被引量:1
  • 7Rashed T, Weeks J R, Gadalla M S, et al. Revealing the Anatomy of cities through spectral mixture analysis of multispectral satellite imagery: a case study of the Greater Cairo, Egypt [ J ]. Geecarto International, 2001, 16(4) :5 - 16. 被引量:1
  • 8Zhang Q, Wang J, Peng X, et al. Urban built-up land change detection with road density and spectral information from multitemporal Landsat TM data [ J ]. International Journal of Remote Sensing, 2002, 23 ( 15 ): 3057 - 3078. 被引量:1
  • 9Yang L, Huang C, Homer C G, et al. An approach for mapping large-area impervious surfaces: synergistic use of Landsat-7 ETM+and high spatial resolution imagery [ J]. Canadian Journal of Remote Sensing, 2003, 29(2): 230-240. 被引量:1
  • 10Rouse J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the great plains with ERTS [ A ]. In: Proceedings of the Third ERTS Symposium NASA SP-351 [ C ], Washington DC, USA,1973, 1:309 - 317. 被引量:1

共引文献125

同被引文献69

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部