期刊文献+

Klein–Gordon oscillator with magnetic and quantum flux fields in non-trivial topological space-time 被引量:1

原文传递
导出
摘要 The relativistic quantum motions of the oscillator field(via the Klein–Gordon oscillator equation)under a uniform magnetic field in a topologically non-trivial space-time geometry are analyzed.We solve the Klein–Gordon oscillator equation using the Nikiforov-Uvarov method and obtain the energy profile and the wave function.We discuss the effects of the non-trivial topology and the magnetic field on the energy eigenvalues.We find that the energy eigenvalues depend on the quantum flux field that shows an analogue of the Aharonov–Bohm effect.Furthermore,we obtain the persistent currents,the magnetization,and the magnetic susceptibility at zero temperature in the quantum system defined in a state and show that these magnetic parameters are modified by various factors.
机构地区 Department of Physics
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第2期89-97,共9页 理论物理通讯(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部