期刊文献+

Universal resources for quantum computing

原文传递
导出
摘要 Unravelling the source of quantum computing power has been a major goal in the field of quantum information science.In recent years,the quantum resource theory(QRT)has been established to characterize various quantum resources,yet their roles in quantum computing tasks still require investigation.The so-called universal quantum computing model(UQCM),e.g.the circuit model,has been the main framework to guide the design of quantum algorithms,creation of real quantum computers etc.In this work,we combine the study of UQCM together with QRT.We find,on one hand,using QRT can provide a resource-theoretic characterization of a UQCM,the relation among models and inspire new ones,and on the other hand,using UQCM offers a framework to apply resources,study relation among these resources and classify them.We develop the theory of universal resources in the setting of UQCM,and find a rich spectrum of UQCMs and the corresponding universal resources.Depending on a hierarchical structure of resource theories,we find models can be classified into families.In this work,we study three natural families of UQCMs in detail:the amplitude family,the quasi-probability family,and the Hamiltonian family.They include some well known models,like the measurement-based model and adiabatic model,and also inspire new models such as the contextual model that we introduce.Each family contains at least a triplet of models,and such a succinct structure of families of UQCMs offers a unifying picture to investigate resources and design models.It also provides a rigorous framework to resolve puzzles,such as the role of entanglement versus interference,and unravel resource-theoretic features of quantum algorithms.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第12期57-74,共18页 理论物理通讯(英文版)
基金 funded by the National Natural Science Foundation of China under Grants Nos.12047503 and 12105343.
  • 相关文献

参考文献2

二级参考文献45

  • 1C.K.Hong,Z.Y.Ou,and L.Mandel,Phys.Rev.Lett.59(1987) 2044. 被引量:1
  • 2R.L.Pfleegor and L.Mandel,Phys.Rev.159 (1967) 1084. 被引量:1
  • 3P.Shor,in Proc.35th Annual IEEE Symposium on Foundations of Computer Science,IEEE Press,Picataway,NJ(1994) pp.124-134. 被引量:1
  • 4L.Grover,in Proc.28th Annual ACM Symposium on Theory of Computing,ACM,New York (1996) pp.212-219. 被引量:1
  • 5G.L.Long,Phys.Rev.A 64 (2001) 022307. 被引量:1
  • 6M.Boyer,G.Brassard,P.Hoyer,and A.Tapp,Fortschr.Phys.46 (1998) 493. 被引量:1
  • 7D.Deutsch,Proc.R.Soc.Lond.A 425 (1989) 73. 被引量:1
  • 8A.Barenco,C.H.Bennett,R.Cleve,D.P.DiVincenzo,N.Margolus,P.Shor,T.Sleator,J.A.Smolin,and H.Weinfurter,Phys.Rev.A 52 (1996) 3457. 被引量:1
  • 9Y.H.Kim,S.P.Kulik,and Y.H.Shih,Phys.Rev.Lett.86 (2001) 1370. 被引量:1
  • 10R.Bruüschweiler,Phys.Rev.Lett.85 (2000) 4815. 被引量:1

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部