期刊文献+

Electrochemically metal-doped reduced graphene oxide films:Properties and applications

Electrochemically metal-doped reduced graphene oxide films:Properties and applications
原文传递
导出
摘要 The fine control of doping levels in graphene materials such as reduced graphene oxide(RGO)is important to properly manipulate their ambipolar transport characteristics for various device applications.However,conventional doping methods involve complex chemical reactions,large-scale doping processes,and poor stability.Herein,a simple and controllable electrochemical doping treatment(EDT),performed via the conductive channels created at the RGO surface by the application of an electric field,is introduced to tailor the electrical properties of RGO films.X-ray photoelectron spectroscopy and Raman spectroscopy measurements are performed to detect the presence of Ni atoms in RGO films after the EDT(EDT-RGO).Then,EDT-RGO field-effect transistors(FETs)are fabricated with different doping areas(0 to 100%fractional area)on the RGO active channel to investigate the effect and selective-area doping capability of the EDT.Owing to p-type doping compensation by the intercalated Ni atoms,the electron mobility of the EDT-RGO FET decreases from 1.40 to 0.12 cm2 V-1s-1 compared with that of the undoped RGO-FET,leading to the conversion from ambipolar to unipolar p-type transfer characteristics. The fine control of doping levels in graphene materials such as reduced graphene oxide(RGO) is important to properly manipulate their ambipolar transport characteristics for various device applications. However, conventional doping methods involve complex chemical reactions, large-scale doping processes,and poor stability. Herein, a simple and controllable electrochemical doping treatment(EDT), performed via the conductive channels created at the RGO surface by the application of an electric field, is introduced to tailor the electrical properties of RGO films. X-ray photoelectron spectroscopy and Raman spectroscopy measurements are performed to detect the presence of Ni atoms in RGO films after the EDT(EDT-RGO).Then, EDT-RGO field-effect transistors(FETs) are fabricated with different doping areas(0 to 100% fractional area) on the RGO active channel to investigate the effect and selective-area doping capability of the EDT. Owing to p-type doping compensation by the intercalated Ni atoms, the electron mobility of the EDT-RGO FET decreases from 1.40 to 0.12 cm2 V-1s-1 compared with that of the undoped RGO-FET,leading to the conversion from ambipolar to unipolar p-type transfer characteristics.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第5期72-80,共9页 材料科学技术(英文版)
基金 supported financially by the National Research Foundation of Korea(NRF)(No.2016R1A3B1908249).
关键词 Reduced graphene oxide Electrochemical DOPING treatment Electrical BREAKDOWN process FIELD-EFFECT TRANSISTOR Reduced graphene oxide Electrochemical doping treatment Electrical breakdown process Field-effect transistor
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部