期刊文献+

基于改进型DAISY的稀疏三维地图构建的算法

Research of Sparse 3D Map Reconstruction Algorithm Based on Improved DAISY
下载PDF
导出
摘要 局部三维地图构建与移动轨迹跟踪在无人机导航、移动机器人和AR等众多领域有着非常重要的作用.本文采用改进型DAISY特征描述符对视频图像序列进行特征匹配跟踪,再利用对极约束求解基础矩阵,结合对极几何与射影几何关系得到相机参数与三维空间点坐标,最后利用增量BA优化三维稀疏地图和相机移动轨迹.实验表明本算法的特征点正确匹配率、三维点重建精度与完整度均有提高,能够输出清晰的相机移动轨迹和三维稀疏地图. Local 3 D map construction and moving trajectory tracking play an important role in many fields,such as UAV navigation,mobile robot and AR.In this paper,the improved Daisy feature descriptor is used to match and track feature points,and then the epipolar constraint is used to solve the fundamental matrix.The epipolar geometry and projective geometry are combined to obtain the camera parameters and 3 D space point coordinates.Finally,the incremental BA is used to optimize the 3 D sparse map and camera moving trajectory.Experimental results show that the correct matching rate,the accuracy and completeness of 3 D point reconstruction are improved.The clear camera trajectory and 3 D sparse map can be obtained.
作者 李亚兰 曹江 陆汝华 黄健全 蒋纯志 Li Yalan;Cao Jiang;Lu Ruhua;Huang Jianquan;Jiang Chunzhi(School of Physics and Electronic Electrical Engineering,Xiangnan University,Chenzhou 423000,China;School of Computer and Artificial Intelligence,Xiangnan University,Chenzhou 423000,China)
出处 《湘南学院学报》 2022年第2期21-27,共7页 Journal of Xiangnan University
基金 湖南省社会科学成果评审委员会课题(XSP21YBC149) 湖南省大学生创新训练项目(S202110545032) 郴州市社会科学规划项目(czssk12021053,czssk12021071) 湘南学院应用特色学科项目(湘南学院校发[2018]108号No.6)
关键词 三维重建 移动定位 特征匹配 three dimensional reconstruction mobile localization feature matching
  • 相关文献

参考文献9

二级参考文献80

  • 1FAN JianQing1,2,ZHOU Yong2,3,CAI JianWen4 & CHEN Min3 1 Department of Operations Research and Financial Engineering,Princeton University,Princeton,NJ08544,USA 2 Department of Statistics,Shanghai University of Finance and Economics,Shanghai 200433,China 3 Institute of Applied Mathematics,Academy of Mathematics and Systems Science,Chinese Academy of Sci-ences,Beijing 100190,China 4 Department of Biostatistics,University of North Carolina at Chapel Hill,Chapel Hill,NC 27599-7420,USA.Gaining effciency via weighted estimators for multivariate failure time data[J].Science China Mathematics,2009,52(6):1113-1128. 被引量:2
  • 2王琨,郑南宁.基于SFM算法的三维人脸模型重建[J].计算机学报,2005,28(6):1048-1053. 被引量:14
  • 3章国锋,秦学英,董子龙,华炜,鲍虎军.面向增强视频的基于结构和运动恢复的摄像机定标[J].计算机学报,2006,29(12):2104-2111. 被引量:10
  • 4肝胆管结石病诊断治疗指南[J].中华消化外科杂志,2007,6(2):156-160. 被引量:445
  • 5郭阳,徐心和.未标定摄像机P5P问题的一种解析解[J].计算机学报,2007,30(7):1195-1200. 被引量:8
  • 6Chekhlov D, Mayol-Cuevas W, Calway A. Appearance based indexing for relocalisation in real-time visual slam [C] // Proceedings of the 19th British Machine Vision Conference. Surrey: BMVA Press, 2008:363-372. 被引量:1
  • 7Davison A J, Reid I D, Molton N D, et al. MonoSLAM: real-time single camera SLAM [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (6): 1052-1067. 被引量:1
  • 8Eade E, Drummond T. Scalable monocular SLAM [C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2006:469-476. 被引量:1
  • 9Montemerlo M, Thrun S. Simultaneous localization and mapping with unknown data association using FastSLAM [C] // Proceedings of International Conference on Robotics and Automation. Los Alamitos: IEEE Computer Society Press, 2003, 2:1985-1991. 被引量:1
  • 10Castle R O, Klein G, Murray D W. Combining MonoSLAM with object recognition for scene augmentation using a wearable camera [J]. Image and Vision Computing, 2010, 28 (11) : 1548-1556. 被引量:1

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部