期刊文献+

锂离子电池电极材料反应速率常数研究 被引量:2

The Study on Reaction Rate Constant of Electrode Materials in Lithium Ion Batteries
下载PDF
导出
摘要 本文介绍了线性扫描伏安法(LSV)测试NCM622/石墨锂离子电池电极材料Li(Ni0.6Co0.2Mn0.2)O2(NCM622)和石墨反应速率常数。结果表明,NCM622反应速率常数取值范围为6.11×10^(-12)~6.85×10^(-11)m^(2.5)·mol^(-0.5)·s^(-1),且在半充的状态下,反应速率常数最大。石墨材料的反应速率常数比NCM622材料的反应速率常数高一个数量级,范围为1.78×10^(-10)~2.78×10^(-10)m^(2.5)·mol^(-0.5)·s^(-1)。因此对于NCM622/石墨锂离子电池体系,全电池反应速率取决于正极。 The rate constants of reaction(k)of Li(Ni0.6Co0.2Mn0.2)O2(NCM622)positive electrode material and graphite negative electrode material in NCM622/graphite lithium ion battery was studied by linear sweep voltammetry(LSV)in this work.The results as following:the rate constants of NCM622 positive electrode ranges from 6.11×10^(-12)m^(2.5)·mol^(-0.5)·s^(-1)to 6.85×10^(-11)m^(2.5)·mol^(0.5)·s^(-1)and reaches its maximum value at half charged state.The rate constants of graphite negative electrode are larger than NCM622 by one magnitude,ranging from 1.78×10^(-10)m^(2.5)·mol^(-0.5)·s^(-1)to 2.78×10^(-10)m^(2.5)·mol^(0.5)·s^(-1).So,it is plausible to conclude that the reaction rate in NCM622/graphite lithium ion battery is determined by cathode material.
作者 邵素霞 朱振东 彭文 SHAO Su-xia;ZHU Zhen-dong;PENG Wen(Hefei Gotion High-tech Power Energy Co.,Ltd.,Hefei,Anhui Province,230012,China)
出处 《电池工业》 CAS 2020年第4期179-183,共5页 Chinese Battery Industry
基金 国家重点研发计划项目(2016YFB0100304)
关键词 锂离子电池 线性扫描伏安法 反应速率常数 Lithium ion battery Linear sweep voltammetry Rate constant of reaction
  • 相关文献

参考文献2

二级参考文献92

  • 1刘昊,何涌,包鲁明,李芳芳,杨眉.LiMn_2O_4的结晶度对电化学性能的影响[J].电池,2006,36(4):271-273. 被引量:3
  • 2曲涛,田彦文,翟玉春.采用PITT与EIS技术测定锂离子电池正极材料LiFePO_4中锂离子扩散系数[J].中国有色金属学报,2007,17(8):1255-1259. 被引量:14
  • 3Xia Y Y,Yoshio M J.Optimization of spinel Li1+xMn2-yO4 as a4 V L-i cell cathode in terms of a L-i Mn-O phase diagram[J].J Electrochem Soc,1997,144(12):4 186-4 189. 被引量:1
  • 4Fei C,Jai P.A comparative electrochemical study of LiMn2O4spinel thin-film and porous laminate[J].Electrochim Acta,2002,47(10):1 607-1 613. 被引量:1
  • 5Fei J B,Cui Y,Yan X H,et al.Controlled preparation of MnO2hierarchical hollow nanostructures and their application in watertreatment[J].Adv Mater,2008,20(3):452-456. 被引量:1
  • 6Xiang M H,Jian J L,Yan C,et al.Preparation of spherical spinelLiMn2O4 cathode material for lithium ion batteries[J].Solid StateElectrochem,2005,9(6):438-444. 被引量:1
  • 7Xia Y Y,Hidefumi T,Hideyuki N,et al.Studies on an L-i Mn-Ospinel system(obtained by melt-impregnation)as a cathode for 4 Vlithium batteries[J].J Power Sources,1995,56(1):61-67. 被引量:1
  • 8Sung W K,Su I P.Analysis of cell impedance measured on theLiMn2O4 film electrode by PITT and EIS with Monte Carlo simu-lation[J].J Electroanal Chem,2002,528(1-2):114-120. 被引量:1
  • 9Izumi T,Norifumi F,Muxina K.Synthesis of spherical LiMn2O4microparticles by a combination of spray pyrolysis and dryingmethod[J].Powder Technol,2008,181(3):228-236. 被引量:1
  • 10Dino T,Maria J T,Eduardo E,et al.Three-dimensionally or-dered macroporous lithium manganese oxide for rechargeablelithium batteries[J].Chem Mater,2008,20(14):4 783-4 790. 被引量:1

共引文献29

同被引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部