期刊文献+

基于模糊神经网络的交通信号配时系统 被引量:1

Study on Traffic Signal Timing System Based on Fuzzy Neural Network
原文传递
导出
摘要 为有效缓解城市道路交通拥堵问题,提高路网的运载能力,设计了一套交通信号灯的动态配时系统。系统基于模糊神经网络(FNN)控制思想,定义了道路拥塞因子作为输入,使用高斯函数作为隶属度函数将其模糊化,通过乘积法求解规则可信度,最终使用加权平均法去模糊化后得到下一次的通行时长。通过VISSIM7.0进行仿真验证,基于模糊神经网络(FNN)的交通信号灯配时系统可以合理地调节信号灯通行时长,有效地降低交通拥塞情况的发生。 In order to effectively alleviate the problem of urban road traffic congestion and improve the carrying capacity of the road network,a set of dynamic timing system for traffic signal lights was designed.The system is based on the fuzzy neural network(FNN)control idea,defines the road congestion factor as input,uses Gaussian function as the membership function to fuzz it,solves the rule credibility by the product method,and finally uses the weighted average method to defuzzify it.The duration of the next pass.Through simulation verification of VISSIM7.0,the traffic signal timing system based on fuzzy neural network(FNN)can reasonably adjust the traffic time of traffic lights and effectively reduce the occurrence of traffic congestion.
作者 王晨晨 崔文旭 赵韦婷 吴琦 孙万众 吴俊华 WANG Chenchen;CUI Wenxu;ZHAO Weiting;WU Qi;SUN Wanzhong;WU Junhua(School of Computer Science,Qufu Normal University,Shandong 276826,China)
出处 《电子技术(上海)》 2021年第8期20-22,共3页 Electronic Technology
关键词 动态配时 道路拥塞因子 模糊神经网络 仿真验证 交通信号 dynamic timing road congestion factor fuzzy neural network simulation verification traffic signal
  • 相关文献

参考文献4

二级参考文献30

共引文献16

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部