期刊文献+

S-Gorenstein平坦模的性质

On the Properties of S-Gorenstein Flat Modules
原文传递
导出
摘要 引入了S-Gorenstein平坦模,给出了S-Gorenstein平坦模的一些等价刻画,证明了S-Gorenstein平坦模关于直积封闭,并且证明了S-Gorenstein平坦模类是投射可解类当且仅当S-Gorenstein平坦模类关于扩张封闭. S-Gorenstein flat modules are introduced,some equivalent characterizations of S-Gorenstein flat modules are given.It is proved that the class of S-Gorenstein flat modules is closed under direct products,and that the class of S-Gorenstein flat modules is projectively resolving if and only if it is closed under extensions.
作者 杨燕妮 YANG Yanni(College of Mathematics and Statistics,Kashi University,Xinjiang Kashi 844008,China;School of Mathematical Science,Nankai University,Tianjin 300071,China)
出处 《河南大学学报(自然科学版)》 CAS 2023年第6期747-751,共5页 Journal of Henan University:Natural Science
基金 新疆维吾尔自治区自然科学基金资助项目(2019D01B04)
关键词 S-Gorenstein平坦模 S-平坦模 右IF环 S-Gorenstein flat modules S-flat modules IFring
  • 相关文献

参考文献2

二级参考文献16

  • 1ROTMAN J J. An introduction to Homological algebra[M]. New York: Academic Press, 1979. 被引量:1
  • 2ENOCHS E E, JENDA O M G, TORRECILLAS B. Gorenstein flat modules[J]. Journal of Nanjing University: Natural Science, 1993, 10(1):1-9. 被引量:1
  • 3ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Math Z, 1995, 220(1):611-633. 被引量:1
  • 4HOLM H. Gorenstein homological dimensions[J]. J Pure Appl Algebra, 2004, 189(1):167-193. 被引量:1
  • 5BENNIS D. Rings over which the class of Gorenstein flat modules is closed under extensions[J]. Comm Algebra, 2009, 37:855-868. 被引量:1
  • 6BENNIS D. Weak Gorenstein global dimension[J]. Int Electron J Algebra, 2010, 8:140-152. 被引量:1
  • 7GAO Zenghui. Weak Gorenstein projective, injective and flat modules[J]. J Algebra Appl, 2013, 12(2):1250165.1-1250165.15. 被引量:1
  • 8GAO Zenghui, WANG Fanggui. All Gorenstein hereditary rings are coherent[J]. J Algebra Appl, 2014, 13(4):1350140.1-1350140.5. 被引量:1
  • 9GAO Zenghui, WANG Fanggui. Weak injective and weak flat modules[J]. Comm Algebra, 2015, 43(9):3857-3868. 被引量:1
  • 10ENOCHS E E, JENDA O M G. Relative homological algebra[M].Berlin:Walter de Gruyer, 2000. 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部