摘要
通过应用大数据技术深度挖掘和分析优质客户综合价值及用电服务需求,将有限的服务资源集中到优质客户的关键服务需求上,从而提升电网企业在电改新形势下的竞争力。阐述了优质客户识别模型的架构设计、建模过程及部署应用。依据优质客户评定原则,以国网河北公司为例,对实施效果进行了分析。结果表明,该模型能够有效识别优质客户,满足客户电服务需求,增加客户黏性,可为电力企业带来直接经济收益。
Through the application of big data technology in-depth mining and analysis of the comprehensive value of high-quality customers and power consumption service demand,the limited service resources will be focused on the key service demand of high-quality customers,so as to improve the competitiveness of power grid enterprises in the new situation of power reform.The architecture design,modeling process and deployment application of high-quality customer identification model are described.According to the evaluation principle of high-quality customer,taking State Grid Hebei Electric Power Co.,Ltd.as an example,the implementation effect is analyzed.The results show that the model can effectively identify high-quality customers,meet customer demand for electricity service,increase customer stickiness,and bring direct economic benefits to power enterprises.
作者
卢艳艳
马超
李静
LU Yanyan;MA Chao;LI Jing(State Grid Hebe Electric Power Co.,Ltd.Information and Communication Branch,Shijiazhuang 050000,China)
出处
《黑龙江电力》
CAS
2020年第2期185-188,共4页
Heilongjiang Electric Power
关键词
大数据
机器学习
优质客户
精准服务
资源优化
big data
machine learning
high-quality customer
precision service
resource optimization