期刊文献+

哥德尔与人工智能 被引量:1

Gödel and Artificial Intelligence
下载PDF
导出
摘要 哥德尔不完全性定理可以表述为没有机械定理证明机器(或程序)能够只证明全部真的数学命题。它不仅仅是一个确定的逻辑定理,还对数学真理的本性以及人心与机器的关系等哲学问题有着深远的影响。本文从两个角度讨论哥德尔与人工智能的关系:第一部分从哥德尔不完全性定理出发,以此为工具来考察“人心胜过机器”反机械论中著名的“卢卡斯—彭罗斯论证”以及“哥德尔析取式论证”;第二部分则集中讨论哥德尔对图灵关于机械程序分析的看似不一致的评论,一方面他毫无保留地赞成图灵关于机械程序的分析,但是另一方面他又断言图灵的分析中包含一个“哲学错误”,这个错误会导致图灵的分析为“人心无法超出机械程序”提供证据。最后从科尔纳对哥德尔式反机械论的最新研究以及当代人工智能在数学定理发现与证明方面的最新进展对哥德尔与人工智能的讨论做一些评论与展望。 Gödel’s incompleteness theorem can be formulated as that no machinal theorem-prover(or procedure)can prove all and only true mathematical propositions.It is not only a definite logical theorem,but also has significant implications for philosophical problems such as the nature of mathematical truth and the relation between human mind and machine.This paper discusses the relationship between Gödel and artificial intelligence from two perspectives.The first part starts from Gödel’s incompleteness theorem and uses it as a framework to investigate the famous Lucas-Penrose argument and Gödel’s disjunctive argument for the anti-mechanic theory that“the human mind surpasses the machine”.The second part focuses on Gödel’s seemingly inconsistent remark on Turing’s analysis of mechanical procedure.On the one hand Gödel approves without reservation of Turing’s analysis of mechanical procedure,but on the other hand he claims that Turing analysis contains a"philosophical error"that would give credence to the thesis that human mind cannot surpass mechanic procedure.Finally,some comments and prospects are made on the discussion of Gödel and artificial intelligence in light of Peter Koellner’s latest logical research on Gödelian anti-mechanic argument and the latest progress of contemporary artificial intelligence in the area of discovery and proof of mathematical theorems.
作者 陈龙 Chen Long(School of Philosophy,Beijing Normal University,Beijing 100875,China)
出处 《科学.经济.社会》 2022年第3期28-37,共10页 Science Economy Society
关键词 哥德尔 人工智能 反机械论 人工直觉 Gödel artificial intelligence anti-mechanism artificial intuition
  • 相关文献

参考文献5

二级参考文献24

  • 1[2]Andrew Hodges, Alan Turing: the Enigma. Simon & Schuster, 1983. 被引量:1
  • 2[3]Martin Davis (ed.), The Undecidable. Hewlett, New York: Raven Press Books, Ltd., 1965. 被引量:1
  • 3[4]Kurt Godel, Collected Works, vol. 1, ed. Solomon Feferman et. al. Oxford University Press, 1986. 被引量:1
  • 4[5]Nagel, Ernest, and J. R Newman, Godel's Proof. New York: New York University Press, 1958. 被引量:1
  • 5[7]Rudy Rucker, Infinity and the Mind. Birkhauser Verlag, 1982 被引量:1
  • 6[9]Hofstadter, 同上, p.707. 被引量:1
  • 7[10]Judson Webb, Mechanism, Mentalism, and Metamathematics: An Essay on Finitism. Reidel, 1980. 被引量:1
  • 8[11]Penrose, 同上, p.416. 被引量:1
  • 9[15]Hao Wang, From Mathematics to Philosophy (以下称 MP). New York: Humanities Press, 1974, 8-11. 被引量:1
  • 10G. Boolos, 1995, "Introductory note to 1951", in S. Frferrnan, J. Dawson, Jr. W. Gold- farb, C. Parsons and R. Solovay (eds.), Collected Works, vol. III, Unpublished Essays and Lectures, pp. 290-304, Oxford: Oxford University Press. 被引量:1

共引文献11

同被引文献23

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部