期刊文献+

广义Orlicz-Lorentz空间上的Holder不等式

Holder’s Inequality for Generalized Orlicz-Lorentz Spaces
下载PDF
导出
摘要 设(Ω,μ)是一个概率空间,φ是一个Musielak-Orlicz函数且设q>1.在这篇文章中,作者建立了广义Orlicz-Lorentz空间上的H?lder不等式.特别地,在A_(∞)权条件下,作者证明了加权Lorentz空间上的Holder不等式.更进一步,这篇文章也得到了Orlicz-Lorentz空间上的Holder不等式.但是,该结果不需要Musielak-Orlicz函数上的相应假设,仅仅需要增长性条件. Let(Ω,μ)be a measure space.Assumeφ:Ω×[0,∞)→[0,∞)is a Musielak-Orlicz function and q∈(1,∞).In this paper,we establish the Holder inequality for the generalized Orlicz-Lorentz spaces L^(φ,q)(Ω).Especially,under the A_(∞)weighted condition,we show that the Holder inequality holds true in weighted Lorentz spaces.Furthermore,the Holder inequality for Orlicz-Lorentz spaces we obtained does not need any of those assumptions in Musielak-Orlicz setting.Only growth conditions are assumed.
作者 谢广亨 Xie Guangheng(School of Mathematics and Statistics,Central South University,Changsha,Hunan 410083,China)
出处 《数学理论与应用》 2020年第2期104-117,共14页 Mathematical Theory and Applications
基金 supported by China Postdoctoral Science Foundation(Grant No.2019M662797)
关键词 Musielak-Orlicz函数 ORLICZ空间 LORENTZ空间 H?lder不等式 Orlicz-Lorentz空间 Musielak-Orlicz function Orlicz space Lorentz space H?lder inequality Weight Orlicz-Lorentz space
  • 相关文献

参考文献1

二级参考文献20

  • 1刘培德,侯友良.Atomic decompositions of Banach-space-valued martingales[J].Science China Mathematics,1999,42(1):38-47. 被引量:9
  • 2Peide Liu,Youliang Hou.Atomic decompositions of Banach-spacevalued martingales[J]. Science in China Series A: Mathematics . 1999 (1) 被引量:1
  • 3Y. Rakotondratsimba.On the boundedness of classical operators on weighted lorentz spaces[J]. Georgian Mathematical Journal . 1998 (2) 被引量:1
  • 4J. -A. Chao,R. -L. Long.Martingale transforms and Hardy spaces[J]. Probability Theory and Related Fields . 1992 (3-4) 被引量:1
  • 5Long R L.Martingale Spaces and Inequalities. . 1993 被引量:1
  • 6Liu P D,Yu L.B-valued martingales spaces with small index and atomic decompositions. Sci China Ser A-Math . 2001 被引量:1
  • 7Bennett C,,Sharply R.Interpolation of Operators. . 1988 被引量:1
  • 8Weisz F.Martingale Hardy spaces and its applications in Fourier Analysis. Lecture Notes in Mathematics . 1994 被引量:1
  • 9Moritoh S,Niwa M,Sobukawa T.Interpolation theorem on Lorentz spaces over weighted measure spaces. Proc Amer Math Soc . 2006 被引量:1
  • 10Mastylo M.Interpolative construction and the generalized cotype of abstract Lorentz spaces. Journal of Mathematical Analysis and Applications . 2006 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部