期刊文献+

基于模糊推理系统的股票买卖策略研究

Research on Stock Trading Strategy Based on Fuzzy Inference System
原文传递
导出
摘要 金融交易指标是分析股票等金融产品买入和卖出策略的普遍选择,但由于指标描述交易策略的模糊性,使得非专业人士很难掌握交易的时间和数量。针对上述问题,本文首先分析随机指标的交易策略。其次根据交易策略和模糊集理论建立模糊推理系统模型,此模型可以给出具体的股票交易策略,包括买入以及卖出的时间和数量等,并通过给定时间段内的获利情况来判断模型的有效性。最后以沪深A股市场的15只股票价格作为实验数据,对模型的有效性进行检验。实验表明,在没有人为因素参与的情况下,大多数股票由系统进行模拟交易都可以在一段时间内获取更大的利润。 Financial trading index is a common choice to analyze the buying and selling strategies of financial products such as stocks.However,because of the ambiguity of index description of trading strategy,it is difficult for non-specialists to master the trading time and volume.For this issue,we first analyzes the trading strategy of stochastics oscillator.Then,according to the trading strategy and fuzzy set theory,fuzzy inference system model based on stochastics oscillator is established.This model can give specific stock trading strategies,including the time and quantity of buying and selling,and judge the effectiveness of the model by the profit situation in a given period of time.Finally,the prices of 15stock in the Shanghai and Shenzhen A-share markets are used as experimental data to test the effectiveness of the model.The experimental results show that in the absence of human factors,most of the simulated trading of stocks by the system can obtain greater profits in a period of time.
作者 聂琳琳 张大庆 黄胜绢 NIE Lin-lin;ZHANG Da-qing;HUANG Sheng-juan(School of Sciences,University of Science and Technology Liaoning,Anshan 114051,China)
出处 《模糊系统与数学》 北大核心 2023年第2期25-32,共8页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(61773013)
关键词 模糊推理系统 金融产品交易策略 随机指标 Fuzzy Inference System(FIS) Trading Strategy of Financial Product Stochastics Oscillator
  • 相关文献

参考文献4

二级参考文献17

  • 1高宏.数理金融学研究方法存在的错误及纠正方法探析[J].时代金融,2020,0(7):17-18. 被引量:1
  • 2Fama E, Blume M. Filter rules and stock market trading profits[J].Journal of Business, 1966, 39(1) : 226 - 241. 被引量:1
  • 3Jensen M, Bennington G. Random walks and technical theories: Some additional evidences[J]. Journal of Finance, 1970, 25(2): 469 - 482. 被引量:1
  • 4Sweeney R. Some New filter ruletests: Methods and results[J]. Journal of Financial and Quantitative Analysis, 1988, 23(3) : 285 - 300. 被引量:1
  • 5Brock W, Lakonishok J, LeBaron B. Simple technical trading rules and the stochastic properties of stock returns[J]. Journal of Finance, 1992, 47(5) : 1731 - 1764. 被引量:1
  • 6C, encay R. Non-linear prediction of security returns with moving average rules[J]. Journal of Forecasting, 1996, 15(3) : 165 - 174. 被引量:1
  • 7C, encay R, Stengos T. Moving average rules, volume and the predictability of security returns with feedforward networks [J]. Journal of Forecasting, 1998, 17(6): 401-414. 被引量:1
  • 8Dacorogna M, Gencay R, Muller U, et al. An introduction to high frequency finance [ M ]. San Diego and London: Academic Press, 2001. 被引量:1
  • 9Mtfller U, Dacorogna M, Dave R, et al. Volatilities of different time resolutions-analyzing the dynamics of market components[J]. Journal of Empirical Finance, 1997, 4(2) : 213 - 239. 被引量:1
  • 10Corsi F. A simplelong memory model of realized volatility[R]. Working Paper, University of Southern Switzerland, 2004. 被引量:1

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部