期刊文献+

圣维南方程处理普适性问题的方法及其科学意义

The method of dealing with universal problems in Saint Venant′s equations and its scientific significance
下载PDF
导出
摘要 因床面阻力项采用了经验公式,求解圣维南方程组前,须对糙率取值进行率定和验证。有学者认为经验公式只是临时性解决问题的手段,那么圣维南方程还有没有发展空间?由于三维Navier-Stokes方程积分得到圣维南方程的过程中,数学上不可避免地引入反映特定个体的河床边界条件信息,圣维南方程不再具有普适性,而采用带有待定系数的经验公式是圣维南方程组维持其“普适性”的必然选择。具有普适性的水流挟沙力公式形式应是张瑞瑾公式这一类具有待定系数和指数的经验公式。 The empirical formula is adopted for the bed resistance,the roughness value must be calibrated and verified by the observation data of the simulated river reach before solving the Saint Venant′s equations.Empirical formula is usually believed as a temporary means,question is raised for the further development of Saint Venant′s equations?It is demonstrated that information reflecting the specific riverbed boundary condition is injected to the Saint Venant′s equations in the integration process of three-dimensional Navier-Stokes equations,which means that Saint Venant′s equations are no longer universal.In order to remedy this defect,inevitable choice is to adopt empirical formulas with undetermined coefficients.From the perspective of scientific methodology,Saint Venant′s method of dealing with universality is scientific significance.It is of exemplary significance to similar problems in other disciplines.It is inferred that the universal sediment carrying capacity formula should be the empirical with undetermined coefficients and indexes as Zhang Ruijin′s formula.
作者 张小峰 ZHANG Xiao-feng(School of Water Resources and Hydroelectric Power Engineering,Wuhan University,Wuhan 430072,China)
出处 《泥沙研究》 CAS CSCD 北大核心 2023年第5期75-80,共6页 Journal of Sediment Research
基金 长江水科学研究联合基金项目(U2240206)
关键词 圣维南方程 NAVIER-STOKES方程 水流挟沙力公式 科学方法论 Saint Venant′s equations Navier Stokes equation formula for sediment carrying capacity of water flow scientific methodology
  • 相关文献

参考文献7

  • 1(美)麦赫默德(Mahmood,K.),(美)叶夫耶维奇(Yevievich,V.)编,林秉南等译..明渠不恒定流 第1卷[M].北京:水利电力出版社,1987:510.
  • 2冯民权,赵明登,郑邦民编著..河渠非恒定流及其物质输运的数值模拟[M].北京:科学出版社,2012:304.
  • 3方红卫,何国建,郑邦民编..水沙输移数学模型[M].北京:科学出版社,2014:350.
  • 4韩其为..推移质运动统计理论[M].北京:科学出版社,2020.
  • 5张小峰.从水力学经验公式看泥沙运动基本理论的发展[J].泥沙研究,2018,43(5):73-80. 被引量:4
  • 6武汉大学主编..河流动力学[M].北京:中国水利水电出版社,2010:205.
  • 7张瑞瑾著..张瑞瑾论文集[M].北京:中国水利水电出版社,1996:382.

二级参考文献3

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部