期刊文献+

Automatic well test interpretation based on convolutional neural network for a radial composite reservoir 被引量:3

下载PDF
导出
摘要 An automatic well test interpretation method for radial composite reservoirs based on convolutional neural network(CNN) is proposed, and its effectiveness and accuracy are verified by actual field data. In this paper, based on the data transformed by logarithm function and the loss function of mean square error(MSE), the optimal CNN is obtained by reducing the loss function to optimize the network with "dropout" method to avoid over fitting. The trained optimal network can be directly used to interpret the buildup or drawdown pressure data of the well in the radial composite reservoir, that is, the log-log plot of the given measured pressure variation and its derivative data are input into the network, the outputs are corresponding reservoir parameters(mobility ratio, storativity ratio, dimensionless composite radius, and dimensionless group characterizing well storage and skin effects), which realizes the automatic initial fitting of well test interpretation parameters. The method is verified with field measured data of Daqing Oilfield. The research shows that the method has high interpretation accuracy, and it is superior to the analytical method and the least square method.
出处 《Petroleum Exploration and Development》 2020年第3期623-631,共9页 石油勘探与开发(英文版)
基金 Supported by the National Science and Technology Major Project(2017ZX05009005-002)
  • 相关文献

参考文献5

二级参考文献30

  • 1许少华,刘扬,何新贵.基于过程神经网络的水淹层自动识别系统[J].石油学报,2004,25(4):54-57. 被引量:24
  • 2李道伦,卢德唐,孔祥言.基于径向基函数网络的隐式曲线[J].计算机研究与发展,2005,42(4):599-603. 被引量:8
  • 3刘能强.实用现代试井解释方法[M].北京:石油工业出版社,1994.. 被引量:2
  • 4焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996.. 被引量:115
  • 5刘能强,实用现代试井解释方法,1994年 被引量:1
  • 6孙增圻,智能控制理论与技术,1997年 被引量:1
  • 7焦李成,神经网络系统理论,1996年 被引量:1
  • 8Mohagegh S D, Goddard C, Popa A, et al. Reservoir characterization through synthetic logs[R]. SPE 65675,2000: 1-10. 被引量:1
  • 9Mohagegh S D,Gaskari R. A soft computing-based method for the identification of best practices, with application in the petroleum industry: IEEE International Conference on Computational Intelligenee for Measurement Systems and Applications, Giardini Naxos, Italy, 2005 [C]. Italy: IEEE, 2005 : 232-237. 被引量:1
  • 10Rolon L F, Mohagegh S D, Ameri S, et al. Developing synthetic well logs for the Upper Devonian units in southern Pennsylvania[R]. SPE 98013,2005: 1-10. 被引量:1

共引文献110

同被引文献17

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部