摘要
在Lagrange坐标下,对一个宏观高阶交通流模型进行离散,得到相应的半离散模型.运用弱解理论,推导出描述宏观高阶模型宽移动堵塞行波解特征参数的方程组.借助数值模拟,验证当质量增量趋于零时半离散模型的宽移动堵塞行波解收敛于宏观高阶模型的解析解.
A semi-discrete model is obtained by discretizing a macroscopic high-order traffic flow model under the Lagrange coordinate.The weak solution theory is applied to obtain a set of equations of the characteristic parameters about the wide moving jam solution of the macroscopic high-order model.The results of numerical simulation verify that the wide moving jam solution of the semi-discrete model converges to the analytical solution of the macroscopic higher-order model for the mass increment tends to zero.
作者
吴春秀
陈明玉
WU Chunxiu;CHEN Mingyu(School of Mathematics and Computer Science,Quanzhou Normal University,Fujian 362000,China)
出处
《泉州师范学院学报》
2019年第6期30-33,共4页
Journal of Quanzhou Normal University
基金
国家自然科学基金资助项目(11602128).
关键词
Lagrange坐标
弱解理论
交通流
宽移动堵塞
行波解
Lagrange coordinate
weak solution theory
traffic flow
wide moving jam
traveling wave solution