摘要
设R是2-扭自由素环,Z(R)是R的中心,U是R的平方封闭Lie理想,F,G是R的广义(θ,θ)-导子,d,h是其伴随(θ,θ)-导子.若对任意的u,v∈U,F,G满足以下条件之一:(1)F(u)θ(u)=±θ(u)G(u),(2)[F(u),θ(v)]=±[θ(u),G(v)],(3)[F(u),θ(v)]=±θ(u)°G(v),则U⊂Z(R).
Let R be a 2-torsion free prime ring with center Z(R),U be a square closed Lie ideal on R,and F,G be the generalized(θ,θ)-derivations with associated(θ,θ)-derivations d,h.In the present paper,we shall prove that U⊂Z(R)if any one of the following properties holds:(1)F(u)θ(u)=±θ(u)G(u),(2)[F(u),θ(v)]=±[θ(u),G(v)],(3)[F(u),θ(v)]=±θ(u)°G(v)for all u,v∈U,then U⊆Z(R).
作者
路春雪
LU Chunxue(Graduate School of Jilin Normal University,Changchun 130000,China)
出处
《商丘师范学院学报》
CAS
2023年第9期8-11,共4页
Journal of Shangqiu Normal University