期刊文献+

The Method Research and Technology Implementation of Eddy Current Hardness-sorting Based on LS-SVM 被引量:2

下载PDF
导出
摘要 According to the practical problems in eddy current sorting,the method and technology of eddy current hardness sorting based on LeastSquaresSupportVectorMachine(LS-SVM)are proposed based on the Xilinx Artix-7 FPGA in this paper.The calculated sorting-hyperplane and designed sorting decision-making machine were used to sort different hardness of the vavles.The experimental results of the vavle sorting show that the sorting success rate can reach 100%under conditions that the number of test vavles is one quarter of the training vavles.The method and technology based on LS-SVM can solve the problems that the impedance feature value is nonlinear with the hardness value and variable sorting interval.It also proved that the LS-SVM algorithm has strong practical value in online eddy current sorting.
出处 《Instrumentation》 2020年第1期13-23,共11页 仪器仪表学报(英文版)
基金 supported by a project of the National Natural Science Foundation(No.51865004) the Guizhou Science and Technology Department(No.QKH20161081,No.QKH20192881)
  • 相关文献

参考文献5

二级参考文献41

  • 1VAPNIK V N. The nature of statistical learning theory[M]. Berlin: Springer-Verlag, 1982. 被引量:1
  • 2XIA Y S, WANG J. A one-layer recurrent neural network for support vector machine learning[J]. IEEE Trans. Syst. Man Cybem. B, Cybern, 2004,34(2): 1261-1269. 被引量:1
  • 3XIA Y S, WANG J. A recurrent neural network for solving nonlinear convex programs subject to linear con- straints[J]. 1EEE Trans. Neural Networks, 2005,16(2):379-386. 被引量:1
  • 4SUYKENS J A K. Least squares support vector machines classifiers[J]. Neural Processing Letters, 1999, 9(3): 293- 300. 被引量:1
  • 5ANGUITA D, RIDELLA S, ROVETrA S. Circuital implementation of support vector machines[J]. Electronics Letters, 1998,34(16):1596-1597. 被引量:1
  • 6ANGUITA D, BONI A. Neural network learning for analog VLSI implementations of support vector machines: a survey[J]. Neurocomputing, 2003,55:265-283. 被引量:1
  • 7TAN Y, XIA Y S, WANG J. Neural network realization of support vector methods for pattern classification[C]. Proceedings of IEEE Int. Joint Conf. Neural Networks, 2000:411-416. 被引量:1
  • 8ANGUITA D, BONI A. Improved neural network for SVM learning[J]. IEEE Trans. Neural Networks, 2002, 13(5): 1243-1244. 被引量:1
  • 9XIA Y S, WANG J. A recurrent neural network for solving linear projection equations, Neural Networks[J]. 2000, 13(3): 337-350. 被引量:1
  • 10PERFETTI R, RICCI E. Analog neural network for support vector machine learning[J]. IEEE Trans. Neural Networks, 2006,17 (4): 1085-1091. 被引量:1

共引文献25

同被引文献23

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部