期刊文献+

The technology of radio frequency fingerprint identification based on deep learning for 5G application 被引量:1

原文传递
导出
摘要 User Equipment(UE)authentication holds paramount importance in upholding the security of wireless networks.A nascent technology,Radio Frequency Fingerprint Identification(RFFI),is gaining prominence as a means to bolster network security authentication.To expedite the integration of RFFI within fifth-generation(5G)networks,this research undertakes the creation of a comprehensive link-level simulation platform tailored for 5G scenarios.The devised platform emulates various device impairments,including an oscillator,IQ modulator,and power amplifier(PA)nonlinearities,alongside simulating channel distortions.Consequent to this,a plausibility analysis is executed,intertwining transmitter device impairments with 3rd Generation Partnership Project(3GPP)new radio(NR)protocols.Subsequently,an exhaustive exploration is conducted to assess the impact of transmitter impairments,deep neural networks(DNNs),and channel effects on RF fingerprinting performance.Notably,under a signal-to-noise ratio(SNR)of 15 d B,the deep learning approach demonstrates the capability to accurately classify 100 UEs with a commendable 91%accuracy rate.Through a multifaceted evaluation,it is ascertained that the Attention-based network architecture emerges as the optimal choice for the RFFI task,serving as the new benchmark model for RFFI applications.
出处 《Security and Safety》 2024年第1期47-67,共21页 一体化安全(英文)
基金 supported by the National Natural Science Foundation of China(No:62201172) the National Key Research and Development Program of China(2022YFE0136800)
  • 相关文献

参考文献1

共引文献15

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部