摘要
为探究直流电压下纳米粒子对油纸复合绝缘电气性能的影响,制备不同浓度TiO2纳米粒子改性油纸试样,对比测试试样的极化电流和直流击穿电压,并借助扩展Debye电路模型建立油纸复合绝缘击穿模型,分析升压过程中电压分布和界面电荷积聚情况。结果表明:纳米粒子的添加导致极化电流显著增大;油纸复合结构击穿电压随纳米粒子浓度的增大先上升后下降,且存在极性效应。分析表明,受纳米粒子添加对松弛极化的影响,不同浓度纳米油纸复合绝缘结构界面电荷极性和积聚量不同,这是导致电压分布和击穿过程差异的根本原因,同时纤维素对负电荷的吸附是存在极性效应的主要原因。
In order to study the influence of nanoparticles on the electrical properties of oil-paper insulation under DC voltage,the polarization currents and DC breakdown voltages of oil-paper insulation with different contents of nano-TiO2 were measured respectively.We fit analyzed the polarization current curves by extended Debye circuit model,and established a breakdown model according to the fitting results to analyze the voltage distribution and interface charge of oil-paper insulation during boosting DC voltage.It was found that the addition of nanoparticles leads to a significant increase in polarization currents of oil and paper samples.Meanwhile,it presents that the DC breakdown voltage of oil-paper insulation increases firstly and then decreases as the nano content rising and different polarity effects are also observed.The results of model analysis show that due to the influence of the addition of nanoparticles on relaxation polarization,the polarity and accumulation of interface charge of oil-paper insulation are different with different nanoparticles contents,which is the fundamental reason for the difference in voltage distribution and breakdown process.At the same time,the adsorption of cellulose on negative charge is the main reason for the polarity effect of DC breakdown.
作者
应宇鹏
黄猛
吕玉珍
李成榕
齐波
YING Yupeng;HUANG Meng;LYU Yuzhen;LI Chengrong;QI Bo(State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(North China Electric Power University),Changping District,Beijing 102206,China)
出处
《中国电机工程学报》
EI
CSCD
北大核心
2019年第S01期249-257,共9页
Proceedings of the CSEE
基金
国家重点研发计划项目(2017YFB0902704)
国家自然科学基金项目(51337003).
关键词
TIO2纳米粒子
油纸绝缘
极化电流
直流击穿
扩展Debye模型
界面电荷
titanium dioxide nanoparticles
oil-paper insulation
polarization current
DC breakdown
extended Debye circuit model
interface charge