期刊文献+

Using improved particle swarm optimization to tune PID controllers in cooperative collision avoidance systems 被引量:6

Using improved particle swarm optimization to tune PID controllers in cooperative collision avoidance systems
原文传递
导出
摘要 The introduction ofproportional-integral-dorivative (PID) controllers into cooperative collision avoidance systems (CCASs) has been hindered by difficulties in their optimization and by a lack of study of their effects on vehicle driving stability, comfort, and fuel economy. In this paper, we propose a method to optimize PID controllers using an improved particle swarm optimization (PSO) algorithm, and to bettor manipulate cooperative collision avoidance with other vehicles. First, we use PRESCAN and MATLAB/Simulink to conduct a united simulation, which constructs a CCAS composed of a PID controller, maneuver strategy judging modules, and a path planning module. Then we apply the improved PSO algorithm to optimize the PID controller based on the dynamic vehicle data obtained. Finally, we perform a simulation test of performance before and after the optimization of the PID controller, in which vehicles equipped with a CCAS undertake deceleration driving and steering under the two states of low speed (≤50 km/h) and high speed (≥100 km/h) cruising. The results show that the PID controller optimized using the proposed method can achieve not only the basic functions of a CCAS, but also improvements in vehicle dynamic stability, riding comfort, and fuel economy. 为解决将PID控制器引入协同碰撞避免(cooperative collision avoidance system,CCAS)的研究中存在的不能合理优化PID控制器,以及对车辆行驶稳定性、舒适性及燃油经济性研究不足的问题,本文提出使用改进的粒子群优化算法(particle swarm optimization,PSO)优化PID控制器的方法,来实现CCAS对车辆更好的操控的目标。首先,本文使用PRESCAN和MATLAB/Simulink进行联合仿真,构建了由PID控制器,机动策略判断模块组成的CCAS。其次,本文使用改进的粒子群算法,依据获得的汽车动力学数据,对PID控制器进行了优化。最后,本文模拟了配备CCAS的车辆在其PID控制器经过优化前后,在低速(≤50 km/h)和高速(≥100 km/h)两种巡航状态下,进行减速行驶、减速转向工况的测试。结果表明,经过本文方法优化的PID控制器,不仅可使CCAS实现基本功能,还可实现车辆动态稳定性,行驶舒适性和燃油经济性的改善。
出处 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第9期1385-1395,共11页 信息与电子工程前沿(英文版)
基金 Project supported by the National Natural Science Foundation o4 China (No. 61300145)
关键词 Cooperative collision avoidance system (CCAS) Improved particle swarm optimization (PSO) PID controller Vehicle comfort Fuel economy 改进粒子群算法 MATLAB/Simulink 避碰系统 粒子群优化算法 应用 PID控制器 行驶稳定性 燃油经济性
  • 相关文献

同被引文献61

引证文献6

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部