摘要
本文以含2条平行路径的交通网络为例,探讨了网络交通流逐日动态演化问题.首先,建立了动态系统模型来刻画网络交通流的演化过程,动态系统模型的不动点就是随机用户平衡解,证明了平衡解存在且唯一.然后,根据非线性动力学理论,推导出了网络交通流演化的稳定性条件.其次,通过数值实验,分析了网络交通流的演化特征,发现了在一定条件下流量的周期振荡和混沌现象.最后,以OD需求为控制变量推导出了网络交通流混沌控制的方法.
This paper presents the day-to-day dynamic evolution of network traffic flow in a simple two-route network.Firstly,a day-to-day dynamical assignment model is formulated,which can depict the evolution of network traffic flow.We have proved that the fixed point of the dynamical system,which is the stochastic user equilibrium solution,exists and is unique.Secondly,based on nonlinear dynamics theory,an equilibrium stability condition for the network is derived.Moreover,the evolution of network traffic flow is investigated through numerical experiments.Meanwhile,periodic and chaotic flows are discovered under certain conditions.Finally,a chaotic control method is derived considering OD demand as control variable.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2012年第9期58-67,共10页
Acta Physica Sinica
基金
国家重点基础研究发展计划(批准号:2012CB725403)
国家自然科学基金(批准号:50978008)
北京市自然科学基金(批准号:8102007)资助的课题~~
关键词
网络交通流
路径选择
动态演化
混沌
network traffic flow
route choice
dynamical evolution
chaos