期刊文献+

基于矩阵分解的单类协同过滤推荐算法 被引量:4

One-class collaborative filtering based on matrix factorization
下载PDF
导出
摘要 新闻网页和书签的推荐被认为是单类协调过滤问题。通常这类数据是相当稀疏的,仅仅一小部分数据是正例,在非正例数据中负例和没有标记的正例是混合在一起的,难以区分开来,因此,就如何解释非正例数据出现了歧义。为了解决该问题,提出了一种加权的带正则化的基于迭代最小二乘法的单类协同过滤算法。即通过对正例赋予权值1,负例赋予一个较小的正实数权值来反映数据的正负置信度。在两个真实的实验数据集上验证了该算法在性能上均优于几个经典的单类协同过滤推荐算法。 News item recommendation and bookmarks recommendation are most naturally thought of as OOCF problems.Usually this kind of data are extremely sparse,just a small fraction are positive examples.Negative examples and unlabeled positive examples are mixed together and are typically unable to distinguish them,therefore ambiguity arises in the interpretation of the non-positive example.This paper proposed a CF algorithm-weighted alternating least squares(wALS).That was,by using weighting scheme assigning "1" to observed examples and low positive real number weights to unobserved examples to reflect the confidence of positive examples and negative examples.The experimental evaluation using two real-world datasets shows that wALS achieves better results in comparison with several classical one-class collaborative filtering recommendation algorithms.
作者 李改 李磊
出处 《计算机应用研究》 CSCD 北大核心 2012年第5期1662-1665,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61003140 61033010) 中山大学高性能与网格计算平台资助项目
关键词 推荐系统 单类协同过滤 矩阵分解 wALS recommendation systems one-class collaborative filtering(OOCF) matrix decomposition wALS
  • 相关文献

参考文献14

  • 1吴金龙..Netflix Prize中的协同过滤算法[D].北京大学,2010:
  • 2RICC F,ROKACH L,SHAPIRA B,et al.Recommender system hand-book[M].[S.l.]:Springer,2011. 被引量:1
  • 3ADOMAVICIUS G,TUZHILIN A.Toward the next generation of rec-ommender systems:a survey of the state-of-the-art and possible exten-sions[J].IEEE Trans on Knowledge and Data Engineering,2005,17(6):734-749. 被引量:1
  • 4罗辛,欧阳元新,熊璋,袁满.通过相似度支持度优化基于K近邻的协同过滤算法[J].计算机学报,2010,33(8):1437-1445. 被引量:126
  • 5陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 6ZHOU Yun-hong,WILKINSON D,SCHREIBER R,et al.Large-scaleparallel collaborative filtering for the Netflix prize[C]//Proc of the4th International Conference on Algorthmic Aspects in Information andManagement.Berlin:Springer,2008:337-348. 被引量:1
  • 7PATEREK A.Improving regularized singular value decomposition forcollaborative filtering[C]//Proc of KDD Cup and Workshop.2007:39-42. 被引量:1
  • 8RENDLE S,FREUDENTHALER C,GANTNER Z,et al.BPR:Bayes-ian personalized ranking from implicit feedback[C]//Proc of the 25thConference on Uncertainty in Artificial Intelligence.Arlington:AUAIPress,2009:452-461. 被引量:1
  • 9PRINZIE A,Van Den POEL D.Random forests for multiclass classi-fication:random multinomial logit[J].Expert Systems with Appli-cations,2008,34:1721-1732. 被引量:1
  • 10LI Xiao-li,YU P S,LIU Bing,et al.Positive unlabeled learning fordata stream classification[C]//Proc of SIAM International Confer-ence on Data Mining.[S.l.]:SIAM,2009:257-268. 被引量:1

二级参考文献11

  • 1Sarwar B,Karypis G,Konstan J,Reidl J.Item-based collaborative filtering recommendation algorithms//Proceedings of the 10th International Conference on World Wide Web.Hong Kong,China,2001:285-295. 被引量:1
  • 2Deshpande M,Karypis G.Item-based top-n recommendation algorithms.ACM Transactions on Information Systems,2004,22(1):143-177. 被引量:1
  • 3Bell R M,Koren Y.Improved neighborhood-based collaborative filtering//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:7-14. 被引量:1
  • 4Koren Y.Factor in the Neighbors:Scalable and accurate collaborative filtering.ACM Transactions on Knowledge Discovery from Data,2009,4(1):1-24. 被引量:1
  • 5Kurucz M,Benczúr A A,Csalogny K.Methods for large scale SVD with missing values//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:31-38. 被引量:1
  • 6Paterek A.Improving regularized singular value decomposition for collaborative filtering//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:39-42. 被引量:1
  • 7Takcs G,Pilszy I,Németh B,Tikky D.Investigation of various matrix factorization methods for large recommender systems//Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition,2008:1-8. 被引量:1
  • 8Herlocker J,Konstan J,Riedl J.An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms.Information Retrieval,2002,5(4):287-310. 被引量:1
  • 9Herlocker J,Konstan J,Terveen L,Riedl J.Evaluating collaborative filtering recommender systems.ACM Transactions on Information Systems,2004,22(1):5-53. 被引量:1
  • 10Adomavicius G,Tuzhilin A.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions.IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749. 被引量:1

共引文献179

同被引文献25

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部