期刊文献+

几个n元平均的积的Schur-p阶幂凸性 被引量:11

Schur-p Power Convexity Involving Some Product of Means in n Variables
下载PDF
导出
摘要 设α>0,A(a)、G(a)、H(a)分别为a=(a1,a2,…,an)∈R+n的算术平均、几何平均和调和平均.本文研究了Aα(a)G(a)和Aα(a)H(a)的Schur-p阶幂凸性. Supposes α0,A(a)、G(a) and H(a) are respectively arithmetic mean,geometric mean and harmonic mean of a=(a1,a2,…,an)∈R+^n.Schur-p power convexity involving A^α(a)G(a) and A^α(a)H(a) are studied.
作者 张小明
出处 《湖南理工学院学报(自然科学版)》 CAS 2011年第2期1-6,13,共7页 Journal of Hunan Institute of Science and Technology(Natural Sciences)
基金 国家自然科学基金资助项目(11071069)
关键词 不等式 控制 Schur-p阶幂凸性 inequalities majorization Schur-p power convexity
  • 相关文献

参考文献12

  • 1Albert W. Marshall, Ingrarn Olkin. Inequalities: Theory of Majorization andlts Applications[M]. New York: Academic Press, Inc, 1979. 被引量:1
  • 2王伯英编著..控制不等式基础[M].北京:北京师范大学出版社,1990:133.
  • 3张小明著..几何凸函数[M].合肥:安徽大学出版社,2004:181.
  • 4张小明,续铁权.广义S-几何凸函数的定义及其应用一则[J].青岛职业技术学院学报,2005,18(4):60-62. 被引量:16
  • 5张小明,褚玉明著..解析不等式新论[M].哈尔滨:哈尔滨工业大学出版社,2009:329.
  • 6Yuming Chu,Yupei Yi. The Schur Harmonic Convexity of the Hamy Symmetric Function and Its Applications[J]. Journal of Inequalities and Applications,Vol.2009(2009), Article ID 838529. http://www.hindawi.com/journals/jia. 被引量:1
  • 7Xiao-ming Zhang. Schur-geometric convexity of a function involving Maclaurin's elementary symmetric mean[J].Journal of Inequalities in Pure and Applied Mathematics, 2007, 8(2). 被引量:1
  • 8Guan Kai-zhong. Some properties of a class of symmetric functions[J]. J. Math. Anal. Appl., 2007, 336:70-80. 被引量:1
  • 9褚玉明,孙天川.THE SCHUR HARMONIC CONVEXITY FOR A CLASS OF SYMMETRIC FUNCTIONS[J].Acta Mathematica Scientia,2010,30(5):1501-1506. 被引量:13
  • 10顾春,石焕南.Lehme平均的Schur凸性和Schur几何凸性[J].数学的实践与认识,2009,39(12):183-188. 被引量:7

二级参考文献4

共引文献28

同被引文献33

  • 1张小明,续铁权.广义S-几何凸函数的定义及其应用一则[J].青岛职业技术学院学报,2005,18(4):60-62. 被引量:16
  • 2李大矛,石焕南.一个二元平均值不等式猜想的新证明[J].数学的实践与认识,2006,36(4):278-283. 被引量:5
  • 3李大矛,顾春,石焕南.Heron平均幂型推广的Schur凸性[J].数学的实践与认识,2006,36(9):386-390. 被引量:13
  • 4Trif T. Monotonicity, comparison and Minkowski's inequality for generalized Muir-head means in two variables[J]. Mathematica, 2006, 48(71): 99-110. 被引量:1
  • 5Yu-ming Chu, Wei-feng Xia.The Schur convexity for the generalized Muirhead mean[J], to appear in Bulletin mathSmatique de la Soci~t~ des Sciences Math6matiques de Roumanie. 被引量:1
  • 6Wei-feng Xia, Yu-ming Chu. The Schur multiplicative convexity of the generalized Muirhead mean values[J]. International Journal of Functional Analysis,Operator Theory and Applications, 2009, 1(1): 1-8. 被引量:1
  • 7Yu-ming Chu, Wei-feng Xia. Necessary and sufficient conditions for the Schur harmonic convexity of the generalized Muirhead mean[J]. Proceedings of A Razmadze Mathematical Institute, 2010(152): 19-27. . 被引量:1
  • 8Zhen-hang Yang, Schur power convexity of Stolarsky means[J]. Publ Math Debrecen, 2012, 80(2): 1-24. 被引量:1
  • 9Kai-zhong Guan, Schur-convexity of the complete symmetric function[J]. Math Inequal Appl, 2006, 9: 567-576. 被引量:1
  • 10Kai-zhong Guan, Some properties of a class of symmetric functions[J]. J Math Anal Appl, 2007, 336: 70-80. 被引量:1

引证文献11

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部