期刊文献+

推荐系统、信息挖掘及基于互联网的信息物理研究 被引量:5

Recommendation Systems,Information Filtering and Internet-Based Information-Physics
下载PDF
导出
摘要 介绍由中国科学技术大学统计物理复杂系统研究组、上海理工大学复杂系统科学研究中心、电子科技大学互联网研究中心和瑞士弗里堡大学物理系所组成的研究团队在国家自然科学基金项目:基于复杂网络的复杂系统动力学及统计行为的研究;动态评价网络的统计分析与信息挖掘;人类行为的动力学和统计力学研究及重大研究计划支持下所完成的关于推荐系统、信息挖掘及基于互联网的信息物理研究方面的工作和研究进展。 This paper present some published works and recent progresses in recommendation systems, information filtering and internet-based information physics developed by the following four affiliations, including Complex Systems Group of Department of Modem Physics, University of Science and Technology of China, Research Center of Complex Systems Science, University of Shanghai for Science and Technology, Web Science Center, University of Electronic Science and Technology of China and Department of Physics, University of Fribourg. These works are supported by the following NSFC foundations: the complex system dynamics and statistical behaviors studies based on complex networks; statistical analysis of the dynamic evolution networks and information filtering;human behavior, dynamics and statistics mechanics; and the key project of important research plan for non-conventional incident emergency management.
出处 《复杂系统与复杂性科学》 EI CSCD 2010年第2期46-49,共4页 Complex Systems and Complexity Science
基金 国家自然科学基金项目(10635040 10975126 91024026 10905052 70901010) 国家重点基础研究计划973项目(2006CB705500) 高校博士点基金项目(20093402110032) 上海市重点学科基金项目(S30501) 上海市科研创新基金项目(11ZZ135 11YZ110) 上海市智能信息处理重点实验室开放基金项目(IIPL-2010-006)
关键词 推荐系统 信息挖掘 基于互联网的信息物理 recommendation systems information filtering internet-based information physics
  • 相关文献

参考文献25

  • 1Zhou T, Kuscsik Z, Liu J G, et al. Solving the apparent diversity-accuracy dilemma of recommender systems[ J]. PNAS, 2010, 107:4511 -4515. 被引量:1
  • 2Zhou T, Lu L Y, Zha Y C. Predicting missing links via local information[J]. European Physical Journal B, 2009, 71:623 - 630. 被引量:1
  • 3Medo M, Zhang Y C, Zhou T. Adaptive model for recommendation of news[ J ]. Europhysics Letters, 2009,88:38005. 被引量:1
  • 4Zhou T, Jiang L L, Su R Q, et al. Effect of initial configuration on network-based Recommendation[ J]. Europhysics Letters, 2008, 81: 58004. 被引量:1
  • 5Zhang Z K, Zhou T, Zhang Y C. Personalized recommendation via integrated diffusion on user-item-tag tripartite graoh[ J ]. Physica A ,2010, 389 : 179. 被引量:1
  • 6Lu L Y, Zhou T. Link prediction in weighted networks: the role of weak ties[ J]. Europhysics Letters, 2010, 89: 18001. 被引量:1
  • 7Ren J, Zhou T, Zhang Y C. Information filtering via self-consistent refinement[ J]. Europhysics Letters,2008, 82: 55007. 被引量:1
  • 8Zhou T, Su R Q, Liu R R, et al. Accurate and diverse recommendations via eliminating redundant correlations[ J]. New Journal of Physics, 2009( 11 ) :123008. 被引量:1
  • 9刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:437
  • 10Liu J G, Chen M Z Q, Chen J C, et al. Recent advances in personal recommneder systems[ J]. International journal of information and systems sciences ,2009 ( 5 ) :230 - 247. 被引量:1

二级参考文献134

  • 1Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186 被引量:1
  • 2Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201 被引量:1
  • 3梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006 被引量:1
  • 4Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58 被引量:1
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749 被引量:1
  • 6Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354 被引量:1
  • 7Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70 被引量:1
  • 8Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87 被引量:1
  • 9Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217 被引量:1
  • 10Linden G, Smith B, York J. Amazon. corn recommendations: hem-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76-80 被引量:1

共引文献530

同被引文献114

引证文献5

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部