期刊文献+

遥感影像均值漂移分割算法的并行化实现 被引量:14

Implementation of parallelization of mean-shift algorithm for multi-scale segmentation of remote sensing images
下载PDF
导出
摘要 本文采用遥感影像数据的均值漂移算法并行化方法来解决均值漂移不能处理过大影像、处理速度过慢等问题,通过分析均值漂移算法的原理,提出了一种新的数据"缓冲区"式分块方法,并进而分别对不同的数据块进行并行分割,从而消除了该算法对数据量的限制,有效避免计算机在处理过大影像时而产生的内存不足问题,并从效率角度对算法进行了改进. Aimed at the problem that the mean shift algorithm sometimes can not compute large volumes of image data,or the data-computing speed may be very slow,by analyzing the principle of the mean-shift image segmentation,this paper presents an image-segmentation idea by processing the data in parallel computing environment,i.e.Data Partition Method with Buffer(DPMB),then we can compute different parts of data separately.By this method,we can avoid the limit of data amounts and memory errors problem of computer,which improves the efficiency of data segmentation.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2010年第5期811-815,共5页 Journal of Harbin Institute of Technology
基金 国家高技术研究发展计划资助项目(2009AA12Z123 2009AA12Z121) 国家自然科学基金项目(40971228 40871203) 国家科技支撑计划重大项目(2006BAJ02A01 2006BAJ14B08)
关键词 多尺度分割 均值漂移 并行化 数据划分 multi-scale segmentation mean shift parallel computing data partition
  • 相关文献

参考文献10

  • 1周成虎著..高分辨率遥感影像地学计算[M].北京:科学出版社,2009:303.
  • 2ZALIK K R, ZALIK B. A sweep-line algorithm for spatial clustering [ J ]. Advances in Engineering Software, 2009 (40) : 445 - 451. 被引量:1
  • 3MUKHERJEE D P, LEVNER Y P, ZHANG H. Ore image segmentation by learning image and shape features [ J]. Pattern Recognition Letters, 2009 (30) : 615 - 622. 被引量:1
  • 4王永忠,梁彦,赵春晖,潘泉.基于多特征自适应融合的核跟踪方法[J].自动化学报,2008,34(4):393-399. 被引量:56
  • 5SHEN Z, LUO J, HUANG G, et al. Distributed computing model for processing remotely sensed images based on grid computing [ J ]. Information Sciences, 2007 (177): 504 -518. 被引量:1
  • 6INNOCENTI E, SILVANI X, MUZYA A, et al. A software framework for fine grain parallelization of cellular models with OpenMP: Application to fire spread [ J]. Environmental Modelling & Software, 2009 ( 24 ) : 819 - 831. 被引量:1
  • 7李乡儒,吴福朝,胡占义.均值漂移算法的收敛性[J].软件学报,2005,16(3):365-374. 被引量:88
  • 8COMANICIU D, MEER P. Mean Shift: A robust approach toward feature space analysis [ J ]. IEEE Transactions On Pattern Analysis and Machine Intelligence, 2002,24(5). 603-619. 被引量:1
  • 9沈占锋,骆剑承,陈秋晓,黄光玉,盛昊.高分辨率遥感影像并行处理数据分配策略研究[J].哈尔滨工业大学学报,2006,38(11):1968-1971. 被引量:29
  • 10CHEN H F, MEER P. Robust regression with projection based M-estimators [ C]//Proceedings of the Ninth IEEE international Conference on Computer Version. Washington : IEEE Computer Society, 2003 : 878 - 885. 被引量:1

二级参考文献40

  • 1Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2000. 142-149. 被引量:1
  • 2Comaniciu D, Ramesh V. Mean shift and optimal prediction for efficient object tracking. In: Mojsilovic A, Hu J, eds. Proc. of the IEEE Int'l Conf. on Image Processing (ICIP). 2000. 70-73. 被引量:1
  • 3Comaniciu D, Ramesh V, Meer P. The variable bandwidth mean shift and data-driven scale selection. In: Proc. of the IEEE Int'l Conf. on Computer Vision (ICCV). 2001. 438-445. http://citeseer.csail.mit.edu/comaniciu01variable.html. 被引量:1
  • 4Comaniciu D, Meer P. Mean shift analysis and applications. In: Proc. of the IEEE Int'l Conf. on Computer Vision (ICCV). 1999. 1197-1203. http://citeseer.ist.psu.edu/comaniciu00realtime.html. 被引量:1
  • 5Bradski GR. Computer vision face tracking for use in a perceptual user interface. Intel Technology Journal, 1998. http://developer. intel.com/technology/itj/q21998/articles/art_2.htm. 被引量:1
  • 6Comaniciu D, Meer P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(5):603-619. 被引量:1
  • 7Comaniciu D. An algorithm for data-driven bandwidth selection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25(2):281-288. 被引量:1
  • 8Comaniciu D. Nonparametric information fusion for motion estimation. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2003. 59-66. http://csdl.computer.org/comp/proceedings/cvpr/2003/1900/01/190010059abs.htm. 被引量:1
  • 9Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25(5):564-575. 被引量:1
  • 10Collins RT. Mean-Shift blob tracking through scale space. In: Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR). 2003. 18-20. http://csdl.computer.org/comp/proceedings/cvpr/2003/1900/02/190020234abs.htm. 被引量:1

共引文献165

同被引文献137

引证文献14

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部