期刊文献+

质心层次特征的无约束手写体数字识别 被引量:6

Recognition of Unconstrained Handwritten Numerals Based on Centroid Layer Feature
下载PDF
导出
摘要 光学字符识别(OCR)是模式识别最为成功的应用之一.目前,OCR的研究重点是无约束手写体字符识别.采用了基于字符质心的层次特征对无约束手写体数字进行分类识别.基于字符质心的不均匀分块方法,在一定程度上可以克服无约束手写体数字字形千变万化所引起的不稳定性.层次特征将字符在空间的二维分布转化为一维,特征抽取过程简单,易于实现.将该算法应用于无约束手写体数字的信函分拣系统,单字的平均识别率达97%以上. Optical character recognition (OCR) is one of the most successful applications of pattern recognition. At present, an emphasis of the research is put on unconstrained handwritten character recognition. An algorithm to recognize unconstrained handwritten numerals based on centroid layer feature is proposed in this paper. The unsymmetrical separating method based on centroid is stable to a certain degree. The layer feature transforms 2 dimension distribution of the character into 1 dimension, and the extraction of this feature is easy to realize. The experiments show that the average recognition rate of single is above 97%.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 1998年第9期31-34,共4页 Journal of Shanghai Jiaotong University
关键词 光学字符识别 质心 层次特征 手写体数字识别 optical character recognition(OCR) centroid layer feature sub classes feature matching
  • 相关文献

参考文献3

二级参考文献5

共引文献21

同被引文献44

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部