期刊文献+

Derivation and Global Convergence for Memoryless Non-quasi-Newton Method

Derivation and Global Convergence for Memoryless Non-quasi-Newton Method
下载PDF
导出
摘要 In this paper, a new class of memoryless non-quasi-Newton method for solving unconstrained optimization problems is proposed, and the global convergence of this method with inexact line search is proved. Furthermore, we propose a hybrid method that mixes both the memoryless non-quasi-Newton method and the memoryless Perry-Shanno quasi-Newton method. The global convergence of this hybrid memoryless method is proved under mild assumptions. The initial results show that these new methods are efficient for the given test problems. Especially the memoryless non-quasi-Newton method requires little storage and computation, so it is able to efficiently solve large scale optimization problems. In this paper,a new class of memoryless non-quasi-Newton method for solving unconstrained optimization problems is proposed,and the global convergence of this method with inexact line search is proved.Furthermore,we propose a hybrid method that mixes both the memoryless non-quasi-Newton method and the memoryless Perry-Shanno quasi-Newton method.The global convergence of this hybrid memoryless method is proved under mild assumptions.The initial results show that these new methods are effcient for the given test problems.Especially the memoryless non-quasi-Newton method requires little storage and computation,so it is able to effciently solve large scale optimization problems.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2009年第3期423-433,共11页 数学研究与评论(英文版)
基金 Foundation item: the National Natural Science Foundation of China (No. 60472071) the Science Foundation of Beijing Municipal Commission of Education (No. KM200710028001).
关键词 memoryless non-quasi-Newton method Wolfe line search global convergence. 非拟牛顿法 记忆方法 全局收敛 无约束最优化问题 混合方式 线搜索 求解
  • 相关文献

参考文献3

二级参考文献3

  • 1袁亚湘,非线性规划数值方法,1993年 被引量:1
  • 2Prof. Dr. K. Ritter. Local and superlinear convergence of a class of variable metric methods[J] 1979,Computing(3):287~297 被引量:1
  • 3Josef Stoer. On the convergence rate of imperfect minimization algorithms in Broyden’sβ-class[J] 1975,Mathematical Programming(1):313~335 被引量:1

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部