摘要
设f(x)在[-1,1]上的二阶导数存在且有界,H_n[f(t);x]、R_n[f(t);x]分别为具有第一类、第二类零点的Hermite-Fejér插值多项式,则当n→∞时,有 H_n[f(t);x]-f(x)=O(1/n)(-1<x<1), R_n[f(t);x]-f(x)=O(1/n)(-1<x<1)。
Let f^11(x) exist and be bounded on [—1,1], H.[f(t);x], R_n[f(t);x] be the HermiteFejér interpolation polynomials of f(x) which have zeros of the first and second kind, then H_n[f(t);x]-f(x)=O(1/n)(-1<x<1), R_n[f(t);x]-f(x)=O(1/n) (-1<x<1), as n→∞.
出处
《大学数学》
1994年第S1期92-94,共3页
College Mathematics