期刊文献+

神经网络应用于多元变量时间序列的建模研究 被引量:6

Application of Neural Networks on Modeling of Multivariate Time Series
下载PDF
导出
摘要 自然界复杂系统的动态特性通常包含在多个变量时间序列的演化轨迹中。采用主成分分析与神经网络相结合的方法,进行多元变量时间序列的建模和预测研究。主要思路是首先通过主成分分析法找到一组相互独立的输入变量;再利用神经网络实现多个变量之间以及变量当前状态和未来状态之间的函数映射。多组实例仿真结果证明了该方法进行多元变量预测的可能性和有效性。 For a practical complex system,the internal dynamics is often contained in the time series of multiple model variables. A new methodology is studied to model and predict multivariate nonlinear time series based on combination of principal component analysis (PCA) and neural network. PCA finds the uncorrelated directions of maximum variance in the data space of different variables. Neural network makes predictions on the basis of approximating both the functional relationship among different variables and the map between current state and future state. Simulation results from different examples show the probability and the validity of the proposed method.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第3期275-279,共5页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60374064)资助项目
关键词 时间序列 BP网络 预测 主成分分析 Time series BP network Prediction Principal component analysis
  • 相关文献

参考文献8

  • 1MAN K S. Long memory time series and short termforecasts [J]. International Journal of Forecasting,2003,19 (3) :477-491. 被引量:1
  • 2BRAUNER N,SHACHAM M. Considering precision of data in reduction of dimensionality and PCA [J].Computers and Chemical Engineering, 2000,24 (12) :2603-2611. 被引量:1
  • 3OJA E. The nonlinear PCA learning rule in independent component analysis [J]. Neurocomputing, 1997,17 (1):25-45. 被引量:1
  • 4张捷,李伯全.应用主元分析方法改进BP算法及其在故障诊断中的应用[J].机械设计与制造,2002(5):9-10. 被引量:5
  • 5石山铭.神经网络与非线性预测模型的变量的合理选择[J].决策与决策支持系统,1993,(4):72-72. 被引量:1
  • 6吴春国,梁艳春,孙延风,周春光,吕英华.关于SVD与PCA等价性的研究[J].计算机学报,2004,27(2):286-288. 被引量:27
  • 7CYBENKO G. Approximation by super position of a single function [J]. Mathematics of Control,Signals and Systems, 1989,2 : 303-314. 被引量:1
  • 8CHEN J L,ISLAM S,BISWAS P. Nonlinear dynamics of hourly ozone concentrations: nonparametric short term prediction [J]. Atmospheric Environment,1998,32(11) :1839-1848. 被引量:1

二级参考文献11

  • 1Liang Y.C., Lee H.P., Lim S.P., Lin W.Z., Lee K.H., Wu C.G.. Proper orthogonal decomposition and its application -- Part I: Theory. Journal of Sound and Vibration,2002, 252(3): 527~544 被引量:1
  • 2Liang Y.C., Lin W.Z., Lee H.P., Lim S.P., Lee K.H., Sun H.. Proper orthogonal decomposition and its application -- Part II: Model reduction for MEMS dynamical analysis. Journal of Sound and Vibration, 2002, 256(3):515~532 被引量:1
  • 3Chatterjee A.. An introduction to the proper orthogonal decomposition. Current Science,2000, 78(7):808~817 被引量:1
  • 4Kunisch K.,Volkwein S..Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition. Journal of Optimization Theory and Applications,1999, 102(2):345~371 被引量:1
  • 5Holmes P., Lumley J.L.,Berkooz G.. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge: Cambridge University Press, 1996 被引量:1
  • 6Liang Y.C., Lin W.Z., Lee H.P., Lim S.P., Lee K.H.,Feng D.P.. A neural-network-based method of model reduction for dynamic simulation of MEMS. Journal of Micromechanics and Microengineering, 2001, 11(3): 226~233 被引量:1
  • 7Bian Z.Q.. Pattern Recognition. Beijing: Tsinghua University Press, 1988(in Chinese)(边肇祺. 模式识别. 北京:清华大学出版社,1988) 被引量:1
  • 8Diamantaras K.I., Kung S.Y.. Principal Component Neural Networks Theory and Applications. New York: John Wiley & Sons Inc, 1996 被引量:1
  • 9王蕴红,谭铁牛,朱勇.基于奇异值分解和数据融合的脸像鉴别[J].计算机学报,2000,23(6):649-653. 被引量:58
  • 10刘士荣,俞金寿.一类模糊模型的结构优化问题研究[J].计算机学报,2001,24(2):164-172. 被引量:7

共引文献30

同被引文献44

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部