期刊文献+

工艺参数随机扰动下的传输线建模与分析新方法 被引量:14

A New Stochastic Modeling and Analysis Method for Transmission Lines in the Presence of Random Process Variations
下载PDF
导出
摘要 本文考虑集成电路制造过程中传输线制造工艺参数随机扰动对传输线传输性能的影响,建立了传输线的随机模型.结合精细积分算法与蒙特卡洛方法分析了该传输线随机模型的瞬态响应,通过对模型输出的正态性进行偏度-峰度检验给出了最差情况估计.对于正弦激励情况推导了无耗传输线相应随机微分方程解的一阶矩的解析形式,给出了二阶矩的数值计算方法,最后估计出输出信号振幅与相移的上下界.实验结果表明本文提出的传输线随机模型及其分析方法可以对传输线的性能进行有效的评估. The random variations of technological parameters are always existent during manufacturing, which have a definite impact on transmission performance of transmission lines. Considering the impact, the stochastic model for transmission lines is proposed, and the precise integration algorithm is combined with Monte Carlo method to analyze the transient response of the stochastic model. Jarque-Bera test is made for the normality of the model' s output and the worst-ease estimation is given. In the ease of sinusoidal excitation, lossless transmission lines are considered. The analytic form of first moment of the corresponding stochastic differential equation' s solution is derived, and the numerical computation method for second moment is given, finally the upper and lower bound of the output signal' s amplitude and phase shift is estimated. Experimental results demonstrate that the proposed stochastic model and the statistical analysis method can evaluate the transmission performance of transmission lines effectively.
出处 《电子学报》 EI CAS CSCD 北大核心 2005年第11期1959-1964,共6页 Acta Electronica Sinica
关键词 传输线 电报方程 随机建模 随机微分方程 蒙特卡洛法 transmission line telegrapher' s equation stochastic modeling stochastic difference equation Monte Carlo Method
  • 相关文献

参考文献11

二级参考文献30

  • 1钟万勰,林家浩.陀螺系统与反对称矩阵辛本征解的计算[J].计算结构力学及其应用,1993,10(3):237-253. 被引量:13
  • 2钟万勰.暂态历程的精细计算方法[J].计算结构力学及其应用,1995,12(1):1-6. 被引量:174
  • 3[4]International Technology Roadmap for Semiconductors 2002 update[ DB/OL ]. tech. Rep, Semiconductor industry association. http://public. itrs. net. 被引量:1
  • 4[5]Jess J. Parametric yield estimation for deep sub-micron VLSI circuits,integrated circuits and systems design[ A]. Proceedings. 15th Symposium on[C]. Porto Allegre, Brazil, 2002. (15) .387 - 388. 被引量:1
  • 5[6]J W Bandler, Chen S H. Circuit optimization:the state of the art [ J ].IEEE Trans Microwave Theory and Techniques, 1988, 36 ( 2 ): 424 -443. 被引量:1
  • 6[7]Martin haugh. Variance reduction (Ⅲ): Important Sampling, Monte Carlo simulation[ DB/OL]. IEOR E4703,2003. http://www. columbia. edu/~ mh2078/MCSspring03/notes09. pdf. 被引量:1
  • 7[8]Keramat M, Kielbasa R. Worst case efficiency of Latin hypercube sampling Monte Carlo (LHSMC) yield estimator of electrical circuits[ A ].Circuits and Systems, IEEE International Symposium[ C ]. Hong Kong,1997.3.1660 - 1663. 被引量:1
  • 8[9]Stephen W Director, Gary D Hachtel. Computationally efficient yield estimation procedures based on simplicial approximatio[ J]. IEEE Trans on CAS, 1978,25(3):121 - 129. 被引量:1
  • 9[10]Hany L Abdel-Malek, Abdel-karim S O Hassan. A boundary gradient search technique and its application in design centering [ J ]. IEEE Trans on CAD,1999,18(11): 1654- 1661. 被引量:1
  • 10[11]Say Wei Foo, Yu Lin. Hybrid method of tolerance design[ A]. Electronics, Circuits and Systems, Proceedings of ICECS' 99 [ C ]. Pafos,Cyprus, 1999.1.557 - 560. 被引量:1

共引文献193

同被引文献150

引证文献14

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部