We present a method for solving partial differential equations using artificial neural networks and an adaptive collocation strategy.In this procedure,a coarse grid of training points is used at the initial training s...We present a method for solving partial differential equations using artificial neural networks and an adaptive collocation strategy.In this procedure,a coarse grid of training points is used at the initial training stages,while more points are added at later stages based on the value of the residual at a larger set of evaluation points.This method increases the robustness of the neural network approximation and can result in significant computational savings,particularly when the solution is non-smooth.Numerical results are presented for benchmark problems for scalar-valued PDEs,namely Poisson and Helmholtz equations,as well as for an inverse acoustics problem.展开更多
Humans can naturally and effectively find salient regions in complex scenes.Motivated by this observation,attention mechanisms were introduced into computer vision with the aim of imitating this aspect of the human vi...Humans can naturally and effectively find salient regions in complex scenes.Motivated by this observation,attention mechanisms were introduced into computer vision with the aim of imitating this aspect of the human visual system.Such an attention mechanism can be regarded as a dynamic weight adjustment process based on features of the input image.Attention mechanisms have achieved great success in many visual tasks,including image classification,object detection,semantic segmentation,video understanding,image generation,3D vision,multimodal tasks,and self-supervised learning.In this survey,we provide a comprehensive review of various attention mechanisms in computer vision and categorize them according to approach,such as channel attention,spatial attention,temporal attention,and branch attention;a related repository https://github.com/MenghaoG uo/Awesome-Vision-Attentions is dedicated to collecting related work.We also suggest future directions for attention mechanism research.展开更多
For any vertex u ? V(G), let T N (u) = {u} ∪ {uυ|uυ ? E(G), υ ? υ(G)} ∪ {υ ? υ(G)|uυ ? E(G) and let f be a total k-coloring of G. The total-color neighbor of a vertex u of G is the color set C f(u) = {f(x) | ...For any vertex u ? V(G), let T N (u) = {u} ∪ {uυ|uυ ? E(G), υ ? υ(G)} ∪ {υ ? υ(G)|uυ ? E(G) and let f be a total k-coloring of G. The total-color neighbor of a vertex u of G is the color set C f(u) = {f(x) | x ? T N (u)}. For any two adjacent vertices x and y of V(G) such that C f(x) ≠ C f(y), we refer to f as a k-avsdt-coloring of G (“avsdt” is the abbreviation of “ adjacent-vertex-strongly-distinguishing total”). The avsdt-coloring number of G, denoted by χast(G), is the minimal number of colors required for a avsdt-coloring of G. In this paper, the avsdt-coloring numbers on some familiar graphs are studied, such as paths, cycles, complete graphs, complete bipartite graphs and so on. We prove Δ(G) + 1 ? χast(G) ? Δ(G) + 2 for any tree or unique cycle graph G.展开更多
Data transmission rates in optical communication systems are approaching the limits of conventional multiplexing methods.Orbital angular momentum(OAM)in optical vortex beams offers a new degree of freedom and the pote...Data transmission rates in optical communication systems are approaching the limits of conventional multiplexing methods.Orbital angular momentum(OAM)in optical vortex beams offers a new degree of freedom and the potential to increase the capacity of free-space optical communication systems,with OAM beams acting as information carriers for OAM division multiplexing(OAM-DM).We demonstrate independent collinear OAM channel generation,transmission and simultaneous detection using Dammann optical vortex gratings(DOVGs).We achieve 80/160 Tbit s^(-1) capacity with uniform power distributions along all channels,with 1600 individually modulated quadrature phase-shift keying(QPSK)/16-QAM data channels multiplexed by 10 OAM states,80 wavelengths and two polarizations.DOVG-enabled OAM multiplexing technology removes the bottleneck of massive OAM state parallel detection and offers an opportunity to raise optical communication systems capacity to Pbit s^(-1) level.展开更多
Detecting and segmenting salient objects from natural scenes, often referred to as salient object detection, has attracted great interest in computer vision. While many models have been proposed and several applicatio...Detecting and segmenting salient objects from natural scenes, often referred to as salient object detection, has attracted great interest in computer vision. While many models have been proposed and several applications have emerged, a deep understanding of achievements and issues remains lacking. We aim to provide a comprehensive review of recent progress in salient object detection and situate this field among other closely related areas such as generic scene segmentation, object proposal generation, and saliency for fixation prediction. Covering 228 publications, we survey i) roots, key concepts, and tasks, ii) core techniques and main modeling trends, and iii) datasets and evaluation metrics for salient object detection. We also discuss open problems such as evaluation metrics and dataset bias in model performance, and suggest future research directions.展开更多
Agricultural productivity is something on which economy highly depends.This is the one of the reasons that disease detection in plants plays an important role in agriculture field,as having disease in plants are quite...Agricultural productivity is something on which economy highly depends.This is the one of the reasons that disease detection in plants plays an important role in agriculture field,as having disease in plants are quite natural.If proper care is not taken in this area then it causes serious effects on plants and due to which respective product quality,quantity or productivity is affected.For instance a disease named little leaf disease is a hazardous disease found in pine trees in United States.Detection of plant disease through some automatic technique is beneficial as it reduces a large work of monitoring in big farms of crops,and at very early stage itself it detects the symptoms of diseases i.e.when they appear on plant leaves.This paper presents an algorithm for image segmentation technique which is used for automatic detection and classification of plant leaf diseases.It also covers survey on different diseases classification techniques that can be used for plant leaf disease detection.Image segmentation,which is an important aspect for disease detection in plant leaf disease,is done by using genetic algorithm.展开更多
Micro-light-emitting diodes(μ-LEDs)are regarded as the cornerstone of next-generation display technology to meet the personalised demands of advanced applications,such as mobile phones,wearable watches,virtual/augmen...Micro-light-emitting diodes(μ-LEDs)are regarded as the cornerstone of next-generation display technology to meet the personalised demands of advanced applications,such as mobile phones,wearable watches,virtual/augmented reality,micro-projectors and ultrahigh-definition TVs.However,as the LED chip size shrinks to below 20μm,conventional phosphor colour conversion cannot present sufficient luminance and yield to support highresolution displays due to the low absorption cross-section.The emergence of quantum dot(QD)materials is expected to fill this gap due to their remarkable photoluminescence,narrow bandwidth emission,colour tuneability,high quantum yield and nanoscale size,providing a powerful full-colour solution for μ-LED displays.Here,we comprehensively review the latest progress concerning the implementation of μ-LEDs and QDs in display technology,including μ-LED design and fabrication,large-scale μ-LED transfer and QD full-colour strategy.Outlooks on QD stability,patterning and deposition and challenges of μ-LED displays are also provided.Finally,we discuss the advanced applications of QD-based μ-LED displays,showing the bright future of this technology.展开更多
The Internet based cyber-physical world has profoundly changed the information environment for the development of artificial intelligence(AI), bringing a new wave of AI research and promoting it into the new era of AI...The Internet based cyber-physical world has profoundly changed the information environment for the development of artificial intelligence(AI), bringing a new wave of AI research and promoting it into the new era of AI 2.0. As one of the most prominent characteristics of research in AI 2.0 era, crowd intelligence has attracted much attention from both industry and research communities. Specifically, crowd intelligence provides a novel problem-solving paradigm through gathering the intelligence of crowds to address challenges. In particular, due to the rapid development of the sharing economy, crowd intelligence not only becomes a new approach to solving scientific challenges, but has also been integrated into all kinds of application scenarios in daily life, e.g., online-tooffline(O2O) application, real-time traffic monitoring, and logistics management. In this paper, we survey existing studies of crowd intelligence. First, we describe the concept of crowd intelligence, and explain its relationship to the existing related concepts, e.g., crowdsourcing and human computation. Then, we introduce four categories of representative crowd intelligence platforms. We summarize three core research problems and the state-of-the-art techniques of crowd intelligence. Finally, we discuss promising future research directions of crowd intelligence.展开更多
Resources over Internet have such intrinsic characteristics as growth, autonomy and diversity, which have brought many challenges to the efficient sharing and comprehensive utilization of these resources. This paper p...Resources over Internet have such intrinsic characteristics as growth, autonomy and diversity, which have brought many challenges to the efficient sharing and comprehensive utilization of these resources. This paper presents a novel approach for the construction of the Internet-based Virtual Computing Environment (iVCE), whose sig- nificant mechanisms are on-demand aggregation and autonomic collaboration. The iVCE is built on the open infrastructure of the Internet and provides harmonious, transparent and integrated services for end-users and applications. The concept of iVCE is presented and its architectural framework is described by introducing three core concepts, i.e., autonomic element, virtual commonwealth and virtual executor. Then the connotations, functions and related key technologies of each components of the architecture are deeply analyzed with a case study, iVCE for Memory.展开更多
On June 17, 2013, MilkyWay-2 (Tianhe-2) supercomputer was crowned as the fastest supercomputer in the world on the 41th TOP500 list. This paper provides an overview of the MilkyWay-2 project and describes the design...On June 17, 2013, MilkyWay-2 (Tianhe-2) supercomputer was crowned as the fastest supercomputer in the world on the 41th TOP500 list. This paper provides an overview of the MilkyWay-2 project and describes the design of hardware and software systems. The key architecture features of MilkyWay-2 are highlighted, including neo-heterogeneous compute nodes integrating commodity- off-the-shelf processors and accelerators that share similar instruction set architecture, powerful networks that employ proprietary interconnection chips to support the massively parallel message-passing communications, proprietary 16- core processor designed for scientific computing, efficient software stacks that provide high performance file system, emerging programming model for heterogeneous systems, and intelligent system administration. We perform extensive evaluation with wide-ranging applications from LINPACK and Graph500 benchmarks to massively parallel software deployed in the system.展开更多
Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an imp...Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an important part in Cognitive Radio Networks,we try to explore its potential in solving signal modulation recognition problem.It cannot be overlooked that DL model is a complex model,thus making them prone to over-fitting.DL model requires many training data to combat with over-fitting,but adding high quality labels to training data manually is not always cheap and accessible,especially in real-time system,which may counter unprecedented data in dataset.Semi-supervised Learning is a way to exploit unlabeled data effectively to reduce over-fitting in DL.In this paper,we extend Generative Adversarial Networks(GANs)to the semi-supervised learning will show it is a method can be used to create a more dataefficient classifier.展开更多
Analysis and comparison of Jiaozhou Bay data collected from May 1991 to February 1994 revealed the spatiotemporal variations of the ambient Si(OH) 4∶NO 3 (Si∶N) concentration ratios and the seasonal variations of (S...Analysis and comparison of Jiaozhou Bay data collected from May 1991 to February 1994 revealed the spatiotemporal variations of the ambient Si(OH) 4∶NO 3 (Si∶N) concentration ratios and the seasonal variations of (Si∶N) ratios in Jiaozhou Bay and showed that the Si∶N ratios were < 1 throughout Jiaozhou Bay in spring, autumn, and winter. These results provide further evidence that silicate limits the growth of phytoplankton (i.e. diatoms) in spring, autumn and winter. Moreover, comparison of the spatiotemporal variations of the Si∶N ratio and primary production in Jiaozhou Bay suggested their close relationship. The spatiotemporal pattern of dissolved silicate matched well that of primary production in Jiaozhou Bay. Along with the environmental change of Jiaozhou Bay in the last thirty years, the N and P concentrations tended to rise, whereas Si concentration showed cyclic seasonal variations. With the variation of nutrient Si limiting the primary production in mind, the authors found that the range of values of primary production is divided into three parts: the basic value of Si limited primary production, the extent of Si limited primary production and the critical value of Si limited primary production, which can be calculated for Jiaozhou Bay by Equations (1), (2) and (3), showing that the time of the critical value of Si limitation of phytoplankton growth in Jiaozhou Bay is around November 3 to November 13 in autumn; and that the time of the critical value of Si satisfaction of phytoplankton growth in Jiaozhou Bay is around May 22 to June 7 in spring. Moreover, the calculated critical value of Si satisfactory for phytoplankton growth is 2.15-0.76 μmol/L and the critical value of Si limitation of phytoplankton growth is 1.42-0.36 μmol/L; so that the time period of Si limitation of phytoplankton growth is around November 13 to May 22 in the next year; the time period of Si satisfactory for phytoplankton growth is around June 7 to November 3. This result also explains why critical values of nutrient展开更多
Intelligent techniques foster the dissemination of new discoveries and novel technologies that advance the ability of robots to assist and support humans. The human-centered intelligent robot has become an important r...Intelligent techniques foster the dissemination of new discoveries and novel technologies that advance the ability of robots to assist and support humans. The human-centered intelligent robot has become an important research field that spans all of the robot capabilities including navigation, intelligent control, pattern recognition and human-robot interaction. This paper focuses on the recent achievements and presents a survey of existing works on human-centered robots. Furthermore, we provide a comprehensive survey of the recent development of the human-centered intelligent robot and discuss the issues and challenges in the field.展开更多
Analysis and comparison of Jiaozhou Bay data collected from May 1991 to February 1994(12 seasonal investigations) provided by the Ecological Station of Jiaozhou Bay revealed the characteristic spatiotemporal variation...Analysis and comparison of Jiaozhou Bay data collected from May 1991 to February 1994(12 seasonal investigations) provided by the Ecological Station of Jiaozhou Bay revealed the characteristic spatiotemporal variation of the ambient concentration Si:DIN and Si:16P ratios and the seasonal variation of Jiaozhou Bay Si:DIN and Si:16P ratios showing that the Si:DIN ratios were < 1 throughout the year in Jiaozhou Bay; and that the Si:16P ratios were < 1 throughout Jiaozhou Bay in spring, autumn and winter. The results proved that silicate limited phytoplankton growth in spring, autumn and winter in Jiaozhou Bay. Analysis of the Si:DIN and Si:P ratios showed that the nutrient Si has been limiting the growth of phytoplankton throughout the year in some Jiaozhou Bay waters; and that the silicate deficiency changed the phytoplankton assemblage structure. Analysis of discontinuous 1962 to 1998 nutrient data showed that there was no N or P limitation of phytoplankton growth in that period. The authors consider that the annual cyclic change of silicate limits phytoplankton growth in spring, autumn and winter every year in Jiaozhou Bay; and that in many Jiaozhou Bay waters where the phytoplankton as the predominant species need a great amount of silicate, analysis of the nutrients N or P limitation of phytoplankton growth relying only on the N and P nutrients and DIN:P ratio could yield inaccurate conclusions. The results obtained by applying the rules of absolute and relative limitation fully support this view. The authors consider that the main function of nutrient silicon is to regulate and control the mechanism of the phytoplankton growth process in the ecological system in estuaries, bays and the sea. The authors consider that according to the evolution theory of Darwin, continuous environmental pressure gradually changes the phytoplankton assemblage's structure and the physiology of diatoms. Diatoms requiring a great deal of silicon either constantly decrease or reduce their requirement for silicon. This will cause 展开更多
Background With the rapid development of computer technology, digital medicine has become a new direction in surgery. The application of digital medicine in hepatic surgery is still at the early stage and less reporte...Background With the rapid development of computer technology, digital medicine has become a new direction in surgery. The application of digital medicine in hepatic surgery is still at the early stage and less reported in the literature. The aim of this study was to apply digital medical technology in the context of hepatic surgery. Methods Data from 64-slice helical computed tomography of 17 patients, including 13 with hepatocellular carcinoma and 4 with hepatic hemangioma, were imported into independently developed medical image software program, segmentation and three-dimensional reconstruction were performed. The three-dimensional models were then processed with the FreeForm Modeling System. We used virtual surgical instruments to perform surgery on the models. Simulated surgeries included six hepatic segmentectomies, four left hemihepatectomies, three right hemihepatectomies for hepatocellular carcinoma, one hepatic segmentectomy, two stripping surgeries, and one irregular segmentectomy combined with stripping surgery for hemangioma. For resections involving more than three hepatic segments, total and residual functional hepatic volumes were measured before and after simulation surgery, and the resection ratio was calculated.Results The anatomy of the models was distinct and was used to localize lesions. We used virtual surgical instruments to perform simulated surgeries and used the models to optimize actual surgeries. We were able to minimize resection volume as well as surgical risk.Conclusions Digital medical technology is helpful in the diagnosis of hepatic disease and in optimizing surgical plans. Three-dimensional models can decrease surgical risk and help prevent postoperative hepatic failure.展开更多
Pulmonary fibrosis, a progressive chronic disease with a high mortality rate, has limited treatment options. Currently, lung transplantation remains the only effective treatment. Here we report that a small RNA, HJT-s...Pulmonary fibrosis, a progressive chronic disease with a high mortality rate, has limited treatment options. Currently, lung transplantation remains the only effective treatment. Here we report that a small RNA, HJT-sRNA-m7, from a Chinese herbal medicine Hong Jing Tian(HJT, RHODIOHAE CRENULATAE RADIX ET RHIZOMA, Rhodiola crenulata) can effectively reduce the expressions of fibrotic hallmark genes and proteins both in alveolar in vitro and in mouse lung tissues in vivo. We also discovered over one hundred oil-soluble chemicals from HJT decoctions, most of which are found in lipid extracts from other Chinese herbals decoctions, including Pu Gong Ying(PGY, TARAXACI HERBA, Taraxacum mongolicum), Chuan Xin Lian(CXL, changed to "ANDROGRAPHIS HERBA, Andrographis paniculata"), and Jin Yin Hua(JYH, lonicera japonica or Honeysuckle). We identified the active component in these decoctions as two forms of phosphocholines, PC(18:0/18:2) and PC(16:0/18:2). These PCs potentially could form liposomes with small RNAs to enter human alveolar and gastric cells. Our experimental results suggest an unprecendent lipid complex route through which botanic small RNA can enter human bodies.Our results provide an innovative treatment strategy for oral delivery of siRNAs as therapeutic medication.展开更多
Since the invention of optical tweezers,optical manipulation has advanced significantly in scientific areas such as atomic physics,optics and biological science.Especially in the past decade,numerous optical beams and...Since the invention of optical tweezers,optical manipulation has advanced significantly in scientific areas such as atomic physics,optics and biological science.Especially in the past decade,numerous optical beams and nanoscale devices have been proposed to mechanically act on nanoparticles in increasingly precise,stable and flexible ways.Both the linear and angular momenta of light can be exploited to produce optical tractor beams,tweezers and optical torque from the microscale to the nanoscale.Research on optical forces helps to reveal the nature of light–matter interactions and to resolve the fundamental aspects,which require an appropriate description of momenta and the forces on objects in matter.In this review,starting from basic theories and computational approaches,we highlight the latest optical trapping configurations and their applications in bioscience,as well as recent advances down to the nanoscale.Finally,we discuss the future prospects of nanomanipulation,which has considerable potential applications in a variety of scientific fields and everyday life.展开更多
Artificial intelligence(AI), particularly deep learning algorithms, is gaining extensive attention for its excellent performance in image-recognition tasks. They can automatically make a quantitative assessment of com...Artificial intelligence(AI), particularly deep learning algorithms, is gaining extensive attention for its excellent performance in image-recognition tasks. They can automatically make a quantitative assessment of complex medical image characteristics and achieve an increased accuracy for diagnosis with higher efficiency. AI is widely used and getting increasingly popular in the medical imaging of the liver, including radiology, ultrasound, and nuclear medicine. AI can assist physicians to make more accurate and reproductive imaging diagnosis and also reduce the physicians' workload. This article illustrates basic technical knowledge about AI, including traditional machine learning and deep learning algorithms, especially convolutional neural networks, and their clinical application in the medical imaging of liver diseases, such as detecting and evaluating focal liver lesions, facilitating treatment, and predicting liver treatment response. We conclude that machine-assisted medical services will be a promising solution for future liver medical care. Lastly, we discuss the challenges and future directions of clinical application of deep learning techniques.展开更多
文摘We present a method for solving partial differential equations using artificial neural networks and an adaptive collocation strategy.In this procedure,a coarse grid of training points is used at the initial training stages,while more points are added at later stages based on the value of the residual at a larger set of evaluation points.This method increases the robustness of the neural network approximation and can result in significant computational savings,particularly when the solution is non-smooth.Numerical results are presented for benchmark problems for scalar-valued PDEs,namely Poisson and Helmholtz equations,as well as for an inverse acoustics problem.
基金National Natural Science Foundation of China(Grant Nos.61521002 and 62132012)。
文摘Humans can naturally and effectively find salient regions in complex scenes.Motivated by this observation,attention mechanisms were introduced into computer vision with the aim of imitating this aspect of the human visual system.Such an attention mechanism can be regarded as a dynamic weight adjustment process based on features of the input image.Attention mechanisms have achieved great success in many visual tasks,including image classification,object detection,semantic segmentation,video understanding,image generation,3D vision,multimodal tasks,and self-supervised learning.In this survey,we provide a comprehensive review of various attention mechanisms in computer vision and categorize them according to approach,such as channel attention,spatial attention,temporal attention,and branch attention;a related repository https://github.com/MenghaoG uo/Awesome-Vision-Attentions is dedicated to collecting related work.We also suggest future directions for attention mechanism research.
基金the National Natural Science Foundation of China (Grant Nos. 10771091, 10661007)
文摘For any vertex u ? V(G), let T N (u) = {u} ∪ {uυ|uυ ? E(G), υ ? υ(G)} ∪ {υ ? υ(G)|uυ ? E(G) and let f be a total k-coloring of G. The total-color neighbor of a vertex u of G is the color set C f(u) = {f(x) | x ? T N (u)}. For any two adjacent vertices x and y of V(G) such that C f(x) ≠ C f(y), we refer to f as a k-avsdt-coloring of G (“avsdt” is the abbreviation of “ adjacent-vertex-strongly-distinguishing total”). The avsdt-coloring number of G, denoted by χast(G), is the minimal number of colors required for a avsdt-coloring of G. In this paper, the avsdt-coloring numbers on some familiar graphs are studied, such as paths, cycles, complete graphs, complete bipartite graphs and so on. We prove Δ(G) + 1 ? χast(G) ? Δ(G) + 2 for any tree or unique cycle graph G.
基金This work was partially supported by the National Natural Science Foundation of China under Grant numbers 61036013,61138003,61427819,61001101 and 61435006XY acknowledges support from the Ministry of Science and Technology of China under National Basic Research Program of China(973)grant no.2015CB352004.
文摘Data transmission rates in optical communication systems are approaching the limits of conventional multiplexing methods.Orbital angular momentum(OAM)in optical vortex beams offers a new degree of freedom and the potential to increase the capacity of free-space optical communication systems,with OAM beams acting as information carriers for OAM division multiplexing(OAM-DM).We demonstrate independent collinear OAM channel generation,transmission and simultaneous detection using Dammann optical vortex gratings(DOVGs).We achieve 80/160 Tbit s^(-1) capacity with uniform power distributions along all channels,with 1600 individually modulated quadrature phase-shift keying(QPSK)/16-QAM data channels multiplexed by 10 OAM states,80 wavelengths and two polarizations.DOVG-enabled OAM multiplexing technology removes the bottleneck of massive OAM state parallel detection and offers an opportunity to raise optical communication systems capacity to Pbit s^(-1) level.
文摘Detecting and segmenting salient objects from natural scenes, often referred to as salient object detection, has attracted great interest in computer vision. While many models have been proposed and several applications have emerged, a deep understanding of achievements and issues remains lacking. We aim to provide a comprehensive review of recent progress in salient object detection and situate this field among other closely related areas such as generic scene segmentation, object proposal generation, and saliency for fixation prediction. Covering 228 publications, we survey i) roots, key concepts, and tasks, ii) core techniques and main modeling trends, and iii) datasets and evaluation metrics for salient object detection. We also discuss open problems such as evaluation metrics and dataset bias in model performance, and suggest future research directions.
文摘Agricultural productivity is something on which economy highly depends.This is the one of the reasons that disease detection in plants plays an important role in agriculture field,as having disease in plants are quite natural.If proper care is not taken in this area then it causes serious effects on plants and due to which respective product quality,quantity or productivity is affected.For instance a disease named little leaf disease is a hazardous disease found in pine trees in United States.Detection of plant disease through some automatic technique is beneficial as it reduces a large work of monitoring in big farms of crops,and at very early stage itself it detects the symptoms of diseases i.e.when they appear on plant leaves.This paper presents an algorithm for image segmentation technique which is used for automatic detection and classification of plant leaf diseases.It also covers survey on different diseases classification techniques that can be used for plant leaf disease detection.Image segmentation,which is an important aspect for disease detection in plant leaf disease,is done by using genetic algorithm.
基金the financial support of Shenzhen Peacock Team funding(KQTD20170810110313773)financial support from the Australian Research Council(ARC)(DP190103316)+1 种基金financial support from the Taiwan science and technology authority,China(107-2221-E-009-113-MY3)financial support from the startup funding of City University of Hong Kong.
文摘Micro-light-emitting diodes(μ-LEDs)are regarded as the cornerstone of next-generation display technology to meet the personalised demands of advanced applications,such as mobile phones,wearable watches,virtual/augmented reality,micro-projectors and ultrahigh-definition TVs.However,as the LED chip size shrinks to below 20μm,conventional phosphor colour conversion cannot present sufficient luminance and yield to support highresolution displays due to the low absorption cross-section.The emergence of quantum dot(QD)materials is expected to fill this gap due to their remarkable photoluminescence,narrow bandwidth emission,colour tuneability,high quantum yield and nanoscale size,providing a powerful full-colour solution for μ-LED displays.Here,we comprehensively review the latest progress concerning the implementation of μ-LEDs and QDs in display technology,including μ-LED design and fabrication,large-scale μ-LED transfer and QD full-colour strategy.Outlooks on QD stability,patterning and deposition and challenges of μ-LED displays are also provided.Finally,we discuss the advanced applications of QD-based μ-LED displays,showing the bright future of this technology.
基金supported by the National Natural Science Foundation of China(No.61532004)
文摘The Internet based cyber-physical world has profoundly changed the information environment for the development of artificial intelligence(AI), bringing a new wave of AI research and promoting it into the new era of AI 2.0. As one of the most prominent characteristics of research in AI 2.0 era, crowd intelligence has attracted much attention from both industry and research communities. Specifically, crowd intelligence provides a novel problem-solving paradigm through gathering the intelligence of crowds to address challenges. In particular, due to the rapid development of the sharing economy, crowd intelligence not only becomes a new approach to solving scientific challenges, but has also been integrated into all kinds of application scenarios in daily life, e.g., online-tooffline(O2O) application, real-time traffic monitoring, and logistics management. In this paper, we survey existing studies of crowd intelligence. First, we describe the concept of crowd intelligence, and explain its relationship to the existing related concepts, e.g., crowdsourcing and human computation. Then, we introduce four categories of representative crowd intelligence platforms. We summarize three core research problems and the state-of-the-art techniques of crowd intelligence. Finally, we discuss promising future research directions of crowd intelligence.
文摘Resources over Internet have such intrinsic characteristics as growth, autonomy and diversity, which have brought many challenges to the efficient sharing and comprehensive utilization of these resources. This paper presents a novel approach for the construction of the Internet-based Virtual Computing Environment (iVCE), whose sig- nificant mechanisms are on-demand aggregation and autonomic collaboration. The iVCE is built on the open infrastructure of the Internet and provides harmonious, transparent and integrated services for end-users and applications. The concept of iVCE is presented and its architectural framework is described by introducing three core concepts, i.e., autonomic element, virtual commonwealth and virtual executor. Then the connotations, functions and related key technologies of each components of the architecture are deeply analyzed with a case study, iVCE for Memory.
基金Acknowledgements This work was partially supported by the Na- tional High-tech R&D Program of China (863 Program) (2012AA01A301), and the National Natural Science Foundation of China (Grant No. 61120106005). The MilkyWay-2 project is a great team effort and benefits from the cooperation of many individuals at NUDT. We thank all the people who have contributed to the system in a variety of ways.
文摘On June 17, 2013, MilkyWay-2 (Tianhe-2) supercomputer was crowned as the fastest supercomputer in the world on the 41th TOP500 list. This paper provides an overview of the MilkyWay-2 project and describes the design of hardware and software systems. The key architecture features of MilkyWay-2 are highlighted, including neo-heterogeneous compute nodes integrating commodity- off-the-shelf processors and accelerators that share similar instruction set architecture, powerful networks that employ proprietary interconnection chips to support the massively parallel message-passing communications, proprietary 16- core processor designed for scientific computing, efficient software stacks that provide high performance file system, emerging programming model for heterogeneous systems, and intelligent system administration. We perform extensive evaluation with wide-ranging applications from LINPACK and Graph500 benchmarks to massively parallel software deployed in the system.
基金This work is supported by the National Natural Science Foundation of China(Nos.61771154,61603239,61772454,6171101570).
文摘Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an important part in Cognitive Radio Networks,we try to explore its potential in solving signal modulation recognition problem.It cannot be overlooked that DL model is a complex model,thus making them prone to over-fitting.DL model requires many training data to combat with over-fitting,but adding high quality labels to training data manually is not always cheap and accessible,especially in real-time system,which may counter unprecedented data in dataset.Semi-supervised Learning is a way to exploit unlabeled data effectively to reduce over-fitting in DL.In this paper,we extend Generative Adversarial Networks(GANs)to the semi-supervised learning will show it is a method can be used to create a more dataefficient classifier.
文摘Analysis and comparison of Jiaozhou Bay data collected from May 1991 to February 1994 revealed the spatiotemporal variations of the ambient Si(OH) 4∶NO 3 (Si∶N) concentration ratios and the seasonal variations of (Si∶N) ratios in Jiaozhou Bay and showed that the Si∶N ratios were < 1 throughout Jiaozhou Bay in spring, autumn, and winter. These results provide further evidence that silicate limits the growth of phytoplankton (i.e. diatoms) in spring, autumn and winter. Moreover, comparison of the spatiotemporal variations of the Si∶N ratio and primary production in Jiaozhou Bay suggested their close relationship. The spatiotemporal pattern of dissolved silicate matched well that of primary production in Jiaozhou Bay. Along with the environmental change of Jiaozhou Bay in the last thirty years, the N and P concentrations tended to rise, whereas Si concentration showed cyclic seasonal variations. With the variation of nutrient Si limiting the primary production in mind, the authors found that the range of values of primary production is divided into three parts: the basic value of Si limited primary production, the extent of Si limited primary production and the critical value of Si limited primary production, which can be calculated for Jiaozhou Bay by Equations (1), (2) and (3), showing that the time of the critical value of Si limitation of phytoplankton growth in Jiaozhou Bay is around November 3 to November 13 in autumn; and that the time of the critical value of Si satisfaction of phytoplankton growth in Jiaozhou Bay is around May 22 to June 7 in spring. Moreover, the calculated critical value of Si satisfactory for phytoplankton growth is 2.15-0.76 μmol/L and the critical value of Si limitation of phytoplankton growth is 1.42-0.36 μmol/L; so that the time period of Si limitation of phytoplankton growth is around November 13 to May 22 in the next year; the time period of Si satisfactory for phytoplankton growth is around June 7 to November 3. This result also explains why critical values of nutrient
基金supported in part by the National Natural Science Foundation of China(61573147,91520201,61625303,61522302,61761130080)Guangzhou Research Collaborative Innovation Projects(2014Y2-00507)+2 种基金Guangdong Science and Technology Research Collaborative Innovation Projects(20138010102010,20148090901056,20158020214003)Guangdong Science and Technology Plan Project(Application Technology Research Foundation)(2015B020233006)National High-Tech Research and De-velopment Program of China(863 Program)(2015AA042303)
文摘Intelligent techniques foster the dissemination of new discoveries and novel technologies that advance the ability of robots to assist and support humans. The human-centered intelligent robot has become an important research field that spans all of the robot capabilities including navigation, intelligent control, pattern recognition and human-robot interaction. This paper focuses on the recent achievements and presents a survey of existing works on human-centered robots. Furthermore, we provide a comprehensive survey of the recent development of the human-centered intelligent robot and discuss the issues and challenges in the field.
基金funded by the NSFC(No.40036010)subsidized by Special Funds from the National Key BaBic Research Program of P.R.China(G19990437)+2 种基金the Postdoctoral Foundation of Ocean University of Qingdaothe Director’s Foundation of the Beihai Monitoring Center of the State Oceanic Administrationthe Foundation of Shanghai Fisheries University
文摘Analysis and comparison of Jiaozhou Bay data collected from May 1991 to February 1994(12 seasonal investigations) provided by the Ecological Station of Jiaozhou Bay revealed the characteristic spatiotemporal variation of the ambient concentration Si:DIN and Si:16P ratios and the seasonal variation of Jiaozhou Bay Si:DIN and Si:16P ratios showing that the Si:DIN ratios were < 1 throughout the year in Jiaozhou Bay; and that the Si:16P ratios were < 1 throughout Jiaozhou Bay in spring, autumn and winter. The results proved that silicate limited phytoplankton growth in spring, autumn and winter in Jiaozhou Bay. Analysis of the Si:DIN and Si:P ratios showed that the nutrient Si has been limiting the growth of phytoplankton throughout the year in some Jiaozhou Bay waters; and that the silicate deficiency changed the phytoplankton assemblage structure. Analysis of discontinuous 1962 to 1998 nutrient data showed that there was no N or P limitation of phytoplankton growth in that period. The authors consider that the annual cyclic change of silicate limits phytoplankton growth in spring, autumn and winter every year in Jiaozhou Bay; and that in many Jiaozhou Bay waters where the phytoplankton as the predominant species need a great amount of silicate, analysis of the nutrients N or P limitation of phytoplankton growth relying only on the N and P nutrients and DIN:P ratio could yield inaccurate conclusions. The results obtained by applying the rules of absolute and relative limitation fully support this view. The authors consider that the main function of nutrient silicon is to regulate and control the mechanism of the phytoplankton growth process in the ecological system in estuaries, bays and the sea. The authors consider that according to the evolution theory of Darwin, continuous environmental pressure gradually changes the phytoplankton assemblage's structure and the physiology of diatoms. Diatoms requiring a great deal of silicon either constantly decrease or reduce their requirement for silicon. This will cause
基金This research was funded by the National Hlgh-Tech Research and Development Program of China (863 Program) (No. 2006AA2Z346), Guangdong Province Science Foundation Group Program (No. 6200171), National Nature Science Foundation of China (No. 30470493), and Science and Technology Projects of Guangdong Province (No. 2003C34303).
文摘Background With the rapid development of computer technology, digital medicine has become a new direction in surgery. The application of digital medicine in hepatic surgery is still at the early stage and less reported in the literature. The aim of this study was to apply digital medical technology in the context of hepatic surgery. Methods Data from 64-slice helical computed tomography of 17 patients, including 13 with hepatocellular carcinoma and 4 with hepatic hemangioma, were imported into independently developed medical image software program, segmentation and three-dimensional reconstruction were performed. The three-dimensional models were then processed with the FreeForm Modeling System. We used virtual surgical instruments to perform surgery on the models. Simulated surgeries included six hepatic segmentectomies, four left hemihepatectomies, three right hemihepatectomies for hepatocellular carcinoma, one hepatic segmentectomy, two stripping surgeries, and one irregular segmentectomy combined with stripping surgery for hemangioma. For resections involving more than three hepatic segments, total and residual functional hepatic volumes were measured before and after simulation surgery, and the resection ratio was calculated.Results The anatomy of the models was distinct and was used to localize lesions. We used virtual surgical instruments to perform simulated surgeries and used the models to optimize actual surgeries. We were able to minimize resection volume as well as surgical risk.Conclusions Digital medical technology is helpful in the diagnosis of hepatic disease and in optimizing surgical plans. Three-dimensional models can decrease surgical risk and help prevent postoperative hepatic failure.
基金supported by the Ministry of Science and Technology of China (2015CB553406)the National Natural Science Foundation of China (81230002, 81490531)the Ministry of Education (IRT1121, B08007)
文摘Pulmonary fibrosis, a progressive chronic disease with a high mortality rate, has limited treatment options. Currently, lung transplantation remains the only effective treatment. Here we report that a small RNA, HJT-sRNA-m7, from a Chinese herbal medicine Hong Jing Tian(HJT, RHODIOHAE CRENULATAE RADIX ET RHIZOMA, Rhodiola crenulata) can effectively reduce the expressions of fibrotic hallmark genes and proteins both in alveolar in vitro and in mouse lung tissues in vivo. We also discovered over one hundred oil-soluble chemicals from HJT decoctions, most of which are found in lipid extracts from other Chinese herbals decoctions, including Pu Gong Ying(PGY, TARAXACI HERBA, Taraxacum mongolicum), Chuan Xin Lian(CXL, changed to "ANDROGRAPHIS HERBA, Andrographis paniculata"), and Jin Yin Hua(JYH, lonicera japonica or Honeysuckle). We identified the active component in these decoctions as two forms of phosphocholines, PC(18:0/18:2) and PC(16:0/18:2). These PCs potentially could form liposomes with small RNAs to enter human alveolar and gastric cells. Our experimental results suggest an unprecendent lipid complex route through which botanic small RNA can enter human bodies.Our results provide an innovative treatment strategy for oral delivery of siRNAs as therapeutic medication.
基金support from the National University of Singapore(no.R-263-000-678-133)supported by the Spanish MINECO grants FIS2012-36113-C03-03,FIS2014-55563-REDC and FIS2015-69295-C3-1-P+2 种基金support from the National Natural Science Foundation of China(no.11504252)the Natural Science Foundation for the Youth of Jiangsu Province(no.BK20150306)the Natural Science Foundation for Colleges and Universities in Jiangsu Province of China(no.15KJB140008).
文摘Since the invention of optical tweezers,optical manipulation has advanced significantly in scientific areas such as atomic physics,optics and biological science.Especially in the past decade,numerous optical beams and nanoscale devices have been proposed to mechanically act on nanoparticles in increasingly precise,stable and flexible ways.Both the linear and angular momenta of light can be exploited to produce optical tractor beams,tweezers and optical torque from the microscale to the nanoscale.Research on optical forces helps to reveal the nature of light–matter interactions and to resolve the fundamental aspects,which require an appropriate description of momenta and the forces on objects in matter.In this review,starting from basic theories and computational approaches,we highlight the latest optical trapping configurations and their applications in bioscience,as well as recent advances down to the nanoscale.Finally,we discuss the future prospects of nanomanipulation,which has considerable potential applications in a variety of scientific fields and everyday life.
文摘Artificial intelligence(AI), particularly deep learning algorithms, is gaining extensive attention for its excellent performance in image-recognition tasks. They can automatically make a quantitative assessment of complex medical image characteristics and achieve an increased accuracy for diagnosis with higher efficiency. AI is widely used and getting increasingly popular in the medical imaging of the liver, including radiology, ultrasound, and nuclear medicine. AI can assist physicians to make more accurate and reproductive imaging diagnosis and also reduce the physicians' workload. This article illustrates basic technical knowledge about AI, including traditional machine learning and deep learning algorithms, especially convolutional neural networks, and their clinical application in the medical imaging of liver diseases, such as detecting and evaluating focal liver lesions, facilitating treatment, and predicting liver treatment response. We conclude that machine-assisted medical services will be a promising solution for future liver medical care. Lastly, we discuss the challenges and future directions of clinical application of deep learning techniques.