Background:As reported by the World Health Organization,a novel coronavirus(2019-nCoV)was identified as the causative virus of Wuhan pneumonia of unknown etiology by Chinese authorities on 7 January,2020.The virus was...Background:As reported by the World Health Organization,a novel coronavirus(2019-nCoV)was identified as the causative virus of Wuhan pneumonia of unknown etiology by Chinese authorities on 7 January,2020.The virus was named as severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)by International Committee on Taxonomy of Viruses on 11 February,2020.This study aimed to develop a mathematical model for calculating the transmissibility of the virus.Methods:In this study,we developed a Bats-Hosts-Reservoir-People transmission network model for simulating the potential transmission from the infection source(probably be bats)to the human infection.Since the Bats-HostsReservoir network was hard to explore clearly and public concerns were focusing on the transmission from Huanan Seafood Wholesale Market(reservoir)to people,we simplified the model as Reservoir-People(RP)transmission network model.The next generation matrix approach was adopted to calculate the basic reproduction number(R0)from the RP model to assess the transmissibility of the SARS-CoV-2.Results:The value of R0 was estimated of 2.30 from reservoir to person and 3.58 from person to person which means that the expected number of secondary infections that result from introducing a single infected individual into an otherwise susceptible population was 3.58.Conclusions:Our model showed that the transmissibility of SARS-CoV-2 was higher than the Middle East respiratory syndrome in the Middle East countries,similar to severe acute respiratory syndrome,but lower than MERS in the Republic of Korea.展开更多
Traditional Chinese Medicine(TCM)has been extensively used to ameliorate diseases in Asia for over thousands of years.However,owing to a lack of formal scientific validation,the absence of information regarding the me...Traditional Chinese Medicine(TCM)has been extensively used to ameliorate diseases in Asia for over thousands of years.However,owing to a lack of formal scientific validation,the absence of information regarding the mechanisms underlying TCMs restricts their application.After oral administration,TCM herbal ingredients frequently are not directly absorbed by the host,but rather enter the intestine to be transformed by gut microbiota.The gut microbiota is a microbial community living in animal intestines,and functions to maintain host homeostasis and health.Increasing evidences indicate that TCM herbs closely affect gut microbiota composition,which is associated with the conversion of herbal components into active metabolites.These may significantly affect the therapeutic activity of TCMs.Microbiota analyses,in conjunction with modern multiomics platforms,can together identify novel functional metabolites and form the basis of future TCM research.展开更多
This study explored whether the transplantation of modified marrow stromal cells (MSCs) has angiogenic effects in a left middle cerebral artery occlusion infarction/reperfusion (MCAO I/R) rat model and preliminarily e...This study explored whether the transplantation of modified marrow stromal cells (MSCs) has angiogenic effects in a left middle cerebral artery occlusion infarction/reperfusion (MCAO I/R) rat model and preliminarily examined the mechanism of angiogenesis following cerebral infarction.MSCs were isolated by using a direct adherent method and cultured.Vascular endothelial growth factor (VEGF) was transfected into MSCs by employing the liposome transfection.The transfection efficiency was measured by the optical density method.The protein expression of VEGF gene before and after transfection was measured by Western blotting.SD rat model of transient occlusion of the left middle cerebral artery was established by using an approach of intra-luminal occlusion.Tetrazolium (TTC) and HE staining were performed to observe the cerebral infarction.ELISAs were used to measure the levels of VEGF in the rat cerebral tissues.The expression patterns of angiopoietin-2 (Ang-2) and CD34 in cells surrounding the area of infarction were immunohistochemistrically oserved.Ang-2 protein expression in the tissue surrounding the area of infarction was measured by Western blotting.VEGF expression in the MSCs increased after transfection at a rate of approximately 28%±3.4%.ELISA showed that the expression of VEGF in the cerebral tissue was significantly increased after induction of infarction,peaking on the 4th day and decreasing to the levels of the sham surgery group (normal) within 7 to 10 days.The VEGF level was significantly higher at each time point in the VEGF-MSC and MSC groups compared to the model group.Moreover,the VEGF level was higher in the VEGF-MSC group than in the MSC group and stayed relatively high until the 10th day.The immunohistochemical results showed that 10 days after the infarction,the number of Ang-2 and CD34-expressing cells in the area surrounding the infarction was significantly higher in the VEGF-MSC group and the MSC group compared to the model group.Moreover,the VEGF level was higher in the VEGF-MSC group tha展开更多
Precise nanomedicine has been extensively explored for efficient cancer imaging and targeted cancer therapy, as evidenced by a few breakthroughs in their preclinical and clinical explorations. Here, we demonstrate the...Precise nanomedicine has been extensively explored for efficient cancer imaging and targeted cancer therapy, as evidenced by a few breakthroughs in their preclinical and clinical explorations. Here, we demonstrate the recent advances of intelligent cancer nanomedicine, and discuss the comprehensive understanding of their structure-function relationship for smart and efficient cancer nanomedicine including various imaging and therapeutic applications, as well as nanotoxicity. In particular, a few emerging strategies that have advanced cancer nanomedicine are also highlighted as the emerging focus such as tumor imprisonment, supramolecular chemotherapy, and DNA nanorobot. The challenge and outlook of some scientific and engineering issues are also discussed in future development. We wish to highlight these new progress of precise nanomedicine with the ultimate goal to inspire more successful explorations of intelligent nanoparticles for future clinical translations.展开更多
Aging biomarkers are a combination of biological parameters to(i)assess age-related changes,(ii)track the physiological aging process,and(iii)predict the transition into a pathological status.Although a broad spectrum...Aging biomarkers are a combination of biological parameters to(i)assess age-related changes,(ii)track the physiological aging process,and(iii)predict the transition into a pathological status.Although a broad spectrum of aging biomarkers has been developed,their potential uses and limitations remain poorly characterized.An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research:How old are we?Why do we get old?And how can we age slower?This review aims to address this need.Here,we summarize our current knowledge of biomarkers developed for cellular,organ,and organismal levels of aging,comprising six pillars:physiological characteristics,medical imaging,histological features,cellular alterations,molecular changes,and secretory factors.To fulfill all these requisites,we propose that aging biomarkers should qualify for being specific,systemic,and clinically relevant.展开更多
In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a pro...In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a promising feedstock.This review focuses on the state-of-the-art catalytic transformation of lignocellulosic biomass into value-added chemicals and fuels.Following a brief introduction on the structure,major resources and pretreatment methods of lignocellulosic biomass,the catalytic conversion of three main components,i.e.,cellulose,hemicellulose and lignin,into various compounds are comprehensively discussed.Either in separate steps or in one-pot,cellulose and hemicellulose are hydrolyzed into sugars and upgraded into oxygen-containing chemicals such as 5-HMF,furfural,polyols,and organic acids,or even nitrogen-containing chemicals such as amino acids.On the other hand,lignin is first depolymerized into phenols,catechols,guaiacols,aldehydes and ketones,and then further transformed into hydrocarbon fuels,bioplastic precursors and bioactive compounds.The review then introduces the transformations of whole biomass via catalytic gasification,catalytic pyrolysis,as well as emerging strategies.Finally,opportunities,challenges and prospective of woody biomass valorization are highlighted.展开更多
All the regulations that define a maximum concentration of metals in the receiving soil are based on total soil metal concentration. However, the potential toxicity of a heavy metal in the soil depends on its speciati...All the regulations that define a maximum concentration of metals in the receiving soil are based on total soil metal concentration. However, the potential toxicity of a heavy metal in the soil depends on its speciation and availability. We studied the effects of heavy metal speciation and availability on soil microorganism activities along a Cu/Zn contamination gradient. Microbial biomass and enzyme activity of soil contaminated with both Cu and Zn were investigated. The results showed that microbial biomass was negatively affected by the elevated metal levels. The microbial biomass-C (Cmic)/organic C (Corg) ratio was closely correlated to heavy metal stress. There were negative correlations between soil microbial biomass, phosphatase activity and NH4NO3 extractable heavy metals. The soil microorganism activity could be predicted using empirical models with the availability of Cu and Zn. We observed that 72% of the variation in phosphatase activity could be explained by the NH4NO3-extractable and total heavy metal concentration. By considering different monitoring approaches and different viewpoints, this set of methods applied in this study seemed sensitive to site differences and contributed to a better understanding of the effects of heavy metals on the size and activity of microorganisms in soils. The data presented demonstrate the relationship between heavy metals availability and heavy metal toxicity to soil microorganism along a contamination gradient.展开更多
Research on two-dimensional(2D) materials has been explosively increasing in last seventeen years in varying subjects including condensed matter physics, electronic engineering, materials science, and chemistry since ...Research on two-dimensional(2D) materials has been explosively increasing in last seventeen years in varying subjects including condensed matter physics, electronic engineering, materials science, and chemistry since the mechanical exfoliation of graphene in 2004. Starting from graphene, 2D materials now have become a big family with numerous members and diverse categories. The unique structural features and physicochemical properties of 2D materials make them one class of the most appealing candidates for a wide range of potential applications. In particular, we have seen some major breakthroughs made in the field of 2D materials in last five years not only in developing novel synthetic methods and exploring new structures/properties but also in identifying innovative applications and pushing forward commercialisation. In this review, we provide a critical summary on the recent progress made in the field of 2D materials with a particular focus on last five years. After a brief backgroundintroduction, we first discuss the major synthetic methods for 2D materials, including the mechanical exfoliation, liquid exfoliation, vapor phase deposition, and wet-chemical synthesis as well as phase engineering of 2D materials belonging to the field of phase engineering of nanomaterials(PEN). We then introduce the superconducting/optical/magnetic properties and chirality of 2D materials along with newly emerging magic angle 2D superlattices. Following that, the promising applications of 2D materials in electronics, optoelectronics, catalysis, energy storage, solar cells, biomedicine, sensors, environments, etc. are described sequentially. Thereafter, we present the theoretic calculations and simulations of 2D materials. Finally, after concluding the current progress, we provide some personal discussions on the existing challenges and future outlooks in this rapidly developing field.展开更多
Recent advances in systemic and locoregional treatments for patients with unresectable or advanced hepatocellular carcinoma(HCC)have resulted in improved response rates.This has provided an opportunity for selected pa...Recent advances in systemic and locoregional treatments for patients with unresectable or advanced hepatocellular carcinoma(HCC)have resulted in improved response rates.This has provided an opportunity for selected patients with initially unresectable HCC to achieve adequate tumor downstaging to undergo surgical resection,a‘conversion therapy’strategy.However,conversion therapy is a new approach to the treatment of HCC and its practice and treatment protocols are still being developed.Review the evidence for conversion therapy in HCC and develop consensus statements to guide clinical practice.Evidence review:Many research centers in China have accumulated significant experience implementing HCC conversion therapy.Preliminary findings and data have shown that conversion therapy represents an important strategy to maximize the survival of selected patients with intermediate stage to advanced HCC;however,there are still many urgent clinical and scientific challenges for this therapeutic strategy and its related fields.In order to summarize and learn from past experience and review current challenges,the Chinese Expert Consensus on Conversion Therapy for Hepatocellular Carcinoma(2021 Edition)was developed based on a review of preliminary experience and clinical data from Chinese and non-Chinese studies in this field and combined with recommendations for clinical practice.Sixteen consensus statements on the implementation of conversion therapy for HCC were developed.The statements generated in this review are based on a review of clinical evidence and real clinical experience and will help guide future progress in conversion therapy for patients with HCC.展开更多
Abundances of a range of air pollutants can be inferred from satellite UV-Vis spectroscopy measurements by using the unique absorption signatures of gas species.Here,we implemented several spectral fitting methods to ...Abundances of a range of air pollutants can be inferred from satellite UV-Vis spectroscopy measurements by using the unique absorption signatures of gas species.Here,we implemented several spectral fitting methods to retrieve tropospheric NO_(2),SO_(2),and HCHO from the ozone monitoring instrument(OMI),with radiative simulations providing necessary information on the interactions of scattered solar light within the atmosphere.We analyzed the spatial distribution and temporal trends of satellite-observed air pollutants over eastern China during 2005-2017,especially in heavily polluted regions.We found significant decreasing trends in NO_(2) and SO_(2) since 2011 over most regions,despite varying temporal features and turning points.In contrast,an overall increasing trend was identified for tropospheric HCHO over these regions in recent years.Furthermore,generalized additive models were implemented to understand the driving forces of air quality trends in China and assess the effectiveness of emission controls.Our results indicated that although meteorological parameters,such as wind,water vapor,solar radiation and temperature,mainly dominated the day-to-day and seasonal fluctuations in air pollutants,anthropogenic emissions played a unique role in the long-term variation in the ambient concentrations of NO_(2),SO_(2),and HCHO in the past 13 years.Generally,recent declines in NO_(2) and SO_(2) could be attributed to emission reductions due to effective air quality policies,and the opposite trends in HCHO may urge the need to control anthropogenic volatile organic compound(VOC)emissions.展开更多
The Normalized Diff erence Vegetation Index(NDVI),one of the earliest remote sensing analytical products used to simplify the complexities of multi-spectral imagery,is now the most popular index used for vegetation as...The Normalized Diff erence Vegetation Index(NDVI),one of the earliest remote sensing analytical products used to simplify the complexities of multi-spectral imagery,is now the most popular index used for vegetation assessment.This popularity and widespread use relate to how an NDVI can be calculated with any multispectral sensor with a visible and a near-IR band.Increasingly low costs and weights of multispectral sensors mean they can be mounted on satellite,aerial,and increasingly—Unmanned Aerial Systems(UAS).While studies have found that the NDVI is effective for expressing vegetation status andquantified vegetation attributes,its widespread use and popularity,especially in UAS applications,carry inherent risks of misuse with end users who received little to no remote sensing education.This article summarizes the progress of NDVI acquisition,highlights the areas of NDVI application,and addresses the critical problems and considerations in using NDVI.Detailed discussion mainly covers three aspects:atmospheric eff ect,saturation phenomenon,and sensor factors.The use of NDVI can be highly eff ective as long as its limitations and capabilities are understood.This consideration is particularly important to the UAS user community.展开更多
Ni-rich layered oxides are considered promising cathodes for advanced lithium-ion batteries(LIBs)in the future,owing to their high capacity and low cost.However,the issues on structural and interfacial stability of Ni...Ni-rich layered oxides are considered promising cathodes for advanced lithium-ion batteries(LIBs)in the future,owing to their high capacity and low cost.However,the issues on structural and interfacial stability of Ni-rich cathodes still pose substantial obstacles in the practical application of advanced LIBs.Here,we employ a one-step method to synthesize a B-doped and La_(4)NiLiO_(8)-coated LiNi_(0.82)5Co_(0.115)Mn_(0.06)O_(2)(BL-1)cathode with reliable structure and interface,for the first time.The La_(4)NiLiO_(8)coating layer can prevent cathodes from electrolyte assault and facilitate Li+diffusion kinetics.Moreover,B-doping can effectively restrain the pernicious H_(2)-H_(3) phase transition and adjust the orientation of primary particles to a radial alignment,which is obstructive to the arise of microcracks induced by the change of anisotropic volume.Specifically,when tested in pouch cells,the BL-1 cathode exhibits outstanding capacity retention of 93.49%after 500 cycles at 1 C.This dual-modification strategy dramatically enhances the stability of the structure and interface for Ni-rich cathode materials,consequently accelerating the commercialization process of high-energy–density LIBs.展开更多
Although the combination of electrochemistry and homogeneous catalysis has proven to be a powerful strategy for achieving a diverse array of novel transformations,some challenges such as controlling the diffusion of c...Although the combination of electrochemistry and homogeneous catalysis has proven to be a powerful strategy for achieving a diverse array of novel transformations,some challenges such as controlling the diffusion of catalyst-related species and the instability of catalysts at electrodes remain to be overcome.Herein,we review recent advances in electrochemical homogeneous catalysis,focusing on electrochemical noble-transition-metal catalysis,photoelectrochemical catalysis,and electrochemical enantioselective catalysis.The topics discussed include:(1)how the noblemetal catalystworks in the presence of cathodic hydrogen evolution,(2)how the photocatalyst gets enhanced redox property,and(3)how the enantioselectivity is regulated in a catalytic electrochemical reaction.展开更多
Layered double hydroxide(LDH) has been widely developed in the field of corrosion and protection in recent years based on its unique characteristics including anion capacity, anion exchange ability, structure memory e...Layered double hydroxide(LDH) has been widely developed in the field of corrosion and protection in recent years based on its unique characteristics including anion capacity, anion exchange ability, structure memory effect, and barrier resistance. This paper comprehensively reviews recent work on the preparations, properties of LDH in the forms of powder and film and their applications in different environments in corrosion and protection. Some novel perspectives are also proposed at the end of the review for future research in corrosion and protection field.展开更多
Background Dry eye is a multifactorial disease of the tears and the ocular surface.This study aimed to investigate the clinical efficacy of a non-steroidal anti-inflammatory drug,pranoprofen,in the treatment of dry ey...Background Dry eye is a multifactorial disease of the tears and the ocular surface.This study aimed to investigate the clinical efficacy of a non-steroidal anti-inflammatory drug,pranoprofen,in the treatment of dry eye.Methods It is a prospective,multi-center,randomized,controlled,parallel group study.One hundred and fifteen patients with mild to moderate dry eye disease (55-60 in each treatment group) participated in this multi-center study.Patients were randomly administered with eyedrops containing 0.1% pranoprofen (PRA) plus 0.1% sodium hyaluronate (SH) or SH only,three times daily for 28 days,followed by a 1-week after treatment observation.Dry eye symptom score (DESS),fluorescein corneal staining (FLCS),tear break-up time (TBUT),and Shirmer 1 tear test (ST1,without anesthesia) were evaluated or conducted before treatment and at each study visit.Conjunctival impression cytology was taken from the patients treated with PRA plus SH before and after treatment and real-time polymerase chain reaction (RT-PCR) was performed to detect the changes of human leukocyte antigen DR (HLA-DR) and intercellular adhesion molecule 1 (ICAM-1).Results Patients treated with PRA plus SH showed gradual improvements of DESS,FLCS,and TBUT.Between-group comparisons of FLCS and TBUT have statistically significant differences from day 14.Good tolerance with no severe adverse events was found in both groups.Patients treated with PRA plus SH had a reduced expression level of HLA-DR and were statistically different after 28 days of therapy.Conclusions The application of PRA at a dose of 0.1% was well tolerated and benefited to the patients with mild to moderate dry eye disease.The underlying mechanism of its efficacy may be associated with the reduction of inflammatory factors of conjunctival epithelial cells.展开更多
Estuaries are important sites for mercury (Hg) methylation, with sulfate-reducing bacteria (SRB) thought to be the main Hg methylators. Distributions of total mercury (THg) and methylmercury (MeHg) in mangrove...Estuaries are important sites for mercury (Hg) methylation, with sulfate-reducing bacteria (SRB) thought to be the main Hg methylators. Distributions of total mercury (THg) and methylmercury (MeHg) in mangrove sediment and sediment core from Jiulong River Estuary Provincial Mangrove Reserve, China were determined and the possible mechanisms of Hg methylation and their controlling factors in mangrove sediments were investigated. Microbiological and geochemical parameters were also determined. Results showed that SRB constitute a small fraction of total bacteria (TB) in both surface sediments and the profile of sediments. The content of THg, MeHg, TB, and SRB were (350 ± 150) ng/g, (0.47 ± 0.11) ng/g, (1.4× 10^011 ± 4.1 × 10^9) cfu/g dry weight (dw), and (5.0× 10^6 d: 2.7 × 10^6) cfu/g dw in surficial sediments, respectively, and (240 ± 24) ng/g, (0.30 ± 0.15) ng/g, (1.9 × 10^11 ± 4.2 × 10^9) cfu/g dw, and (1.3 × 10^6 ± 2.0 × 10^6) cfu/g dw in sediment core, respectively. Results showed that THg, MeHg, TB, MeHg/THg, salinity and total sulfur (TS) increased with depth, but total organic matter (TOM), SRB, and pH decreased with depth. Concentrations of MeHg in sediments showed significant positive correlation with THg, salinity, TS, and MeHg/THg, and significant negative correlation with SRB, TOM, and pH. It was concluded that other microbes, rather than SRB, may also act as main Hg methylators in mangrove sediments.展开更多
Background:Treatment options for Chinese patients with locally advanced or metastatic squamous-cell non-small-cell lung cancer(sqNSCLC)after failure of first-line chemotherapy are limited.This study(ORIENT-3)aimed to ...Background:Treatment options for Chinese patients with locally advanced or metastatic squamous-cell non-small-cell lung cancer(sqNSCLC)after failure of first-line chemotherapy are limited.This study(ORIENT-3)aimed to evaluate the efficacy and safety of sintilimab versus docetaxel as second-line treatment in patients with locally advanced or metastatic sqNSCLC.Methods:ORIENT-3 was an open-label,multicenter,randomized controlled phase 3 trial that recruited patients with stage IIIB/IIIC/IV sqNSCLC after failure with first-line platinum-based chemotherapy.Patients were randomized in a 1:1 ratio to receive either 200 mg of sintilimab or 75 mg/m^(2) of docetaxel intravenously every 3 weeks,stratified by the Eastern Cooperative Oncology Group performance status.The primary endpoint was overall survival(OS)in the full analysis set(FAS).Secondary endpoints included progression-free survival(PFS),objective response rate(ORR),disease control rate(DCR),duration of response(DoR)and safety.Results:Between August 25,2017,and November 7,2018,290 patients were randomized.For FAS,10 patients fromthe docetaxel armwere excluded.Themedian OS was 11.79(n=145;95%confidence interval[CI],10.28-15.57)months with sintilimab versus 8.25(n=135;95%CI,6.47-9.82)months with docetaxel(hazard ratio[HR]:0.74;95%CI,0.56-0.96;P=0.025).Sintilimab treatment significantly prolonged PFS(median 4.30 vs.2.79 months;HR:0.52;95%CI,0.39-0.68;P<0.001)and showed higher ORR(25.50%vs.2.20%,P<0.001)and DCR(65.50%vs.37.80%,P<0.001)than the docetaxel arm.The median DoRwas 12.45(95%CI,4.86-25.33)months in the sintilimab arm and 4.14(95%CI,1.41-7.23)months in the docetaxel arm(P=0.045).Treatment-related adverse events of grade≥3were reported in 26(18.1%)patients in the sintilimab arm and 47(36.2%)patients in the docetaxel arm.Exploratory biomarker analysis showed potential predictive values of expression levels of two transcription factors,including OVOL2(HR:0.35;P<0.001)and CTCF(HR:3.50;P<0.001),for sintilimab treatment.Conclusions:Compared with docetaxel,sintili展开更多
Owing to its nice performance, low cost, and simple solution-processing, organic-inorganic hybrid perovskite solar cell(PSC) becomes a promising candidate for next-generation high-efficiency solar cells.The power conv...Owing to its nice performance, low cost, and simple solution-processing, organic-inorganic hybrid perovskite solar cell(PSC) becomes a promising candidate for next-generation high-efficiency solar cells.The power conversion efficiency(PCE) has boosted from 3.8% to 25.2% over the past ten years. Despite the rapid progress in PCE, the device stability is a key issue that impedes the commercialization of PSCs. Recently, all-inorganic cesium lead halide perovskites have attracted much attention due to their better stability compared with their organic-inorganic counterpart. In this progress report, we summarize the properties of CsPb(IxBr1-x)3 and their applications in solar cells. The current challenges and corresponding solutions are discussed. Finally, we share our perspectives on CsPb(IxBr1-x)3 solar cells and outline possible directions to further improve the device performance.展开更多
Pressing need goes ahead for accessing freshwater in insufficient supply countries and regions,which will become a restrictive factor for human development and production.In recent years,solar-driven water evaporation...Pressing need goes ahead for accessing freshwater in insufficient supply countries and regions,which will become a restrictive factor for human development and production.In recent years,solar-driven water evaporation(SDWE)systems have attracted increasing attention for their specialty in no consume conventional energy,pollution-free,and the high purity of fresh water.In particular,carbon-based photothermal conversion materials are preferred light-absorbing material for SDWE systems because of their wide range of spectrum absorption and high photothermal conversion efficiency based on superconjugate effect.Until now,many carbon-based SDWE systems have been reported,and various structures emerged and were designed to enhance light absorption,optimize heat management,and improve the efficient water transport path.In this review,we attempt to give a comprehensive summary and discussions of structure progress of the carbon-based SDWE systems and their working mechanisms,including carbon nanoparticles systems,single-layer photothermal membrane systems,bi-layer structural photothermal systems,porous carbon-based materials systems,and three dimensional(3D)systems.In these systems,the latest 3D systems can expand the light path by allowing light to be reflected multiple times in the microcavity to increase the light absorption rate,and its large heat exchange area can prompt more water to evaporate,which makes them the promising application foreground.We hope our review can spark the probing of underlying principles and inspiring design strategies of these carbonbased SDWE systems,and further guide device optimizations,eventually promoting in extensive practical applications in the future.展开更多
Novel SiO2/BiOCl composites were fabricated by decorating BiOCl nanosheets with SiO2 nanoparticles via a simple hydrothermal process. The as-prepared pure BiOCl and SiO2/BiOCl composites were intensively characterized...Novel SiO2/BiOCl composites were fabricated by decorating BiOCl nanosheets with SiO2 nanoparticles via a simple hydrothermal process. The as-prepared pure BiOCl and SiO2/BiOCl composites were intensively characterized by various techniques such as XRD, FT-IR, SEM/TEM, BET, UV-vis, DRS, XPS, and photocurrent measurements. The SiO2/BiOCl composite nanosheets displayed high photocatalytic activity and excellent stability in the degradation of organic pollutants such as phenol, bisphenol A (BPA), and rhodamine B (RhB). With respect to those over bare BiOCl, the degradation rates of RhB, BPA, and phenol over 1.88% SiO2/BiOCl increased 16.5%, 29.0%, and 38.7%, respectively. Radical capturing results suggested that h^+ is the major reactive species and that hydroxyl (·OH) and superoxide (·O2^-) radicals could also be involved in the degradation of organic pollutants. The enhanced photocatalytic performances of SiO2/BiOCl composites can be mainly attributed to the improved texture and the formation of intimate SiO2/BiOCl interfaces, which largely promoted the adsorption of organic pollutants, enhanced the light harvesting, and accelerated the separation of e^– and h^+.展开更多
基金This study was supported by Xiamen New Coronavirus Prevention and Control Emergency Tackling Special Topic Program(No:3502Z2020YJ03).
文摘Background:As reported by the World Health Organization,a novel coronavirus(2019-nCoV)was identified as the causative virus of Wuhan pneumonia of unknown etiology by Chinese authorities on 7 January,2020.The virus was named as severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)by International Committee on Taxonomy of Viruses on 11 February,2020.This study aimed to develop a mathematical model for calculating the transmissibility of the virus.Methods:In this study,we developed a Bats-Hosts-Reservoir-People transmission network model for simulating the potential transmission from the infection source(probably be bats)to the human infection.Since the Bats-HostsReservoir network was hard to explore clearly and public concerns were focusing on the transmission from Huanan Seafood Wholesale Market(reservoir)to people,we simplified the model as Reservoir-People(RP)transmission network model.The next generation matrix approach was adopted to calculate the basic reproduction number(R0)from the RP model to assess the transmissibility of the SARS-CoV-2.Results:The value of R0 was estimated of 2.30 from reservoir to person and 3.58 from person to person which means that the expected number of secondary infections that result from introducing a single infected individual into an otherwise susceptible population was 3.58.Conclusions:Our model showed that the transmissibility of SARS-CoV-2 was higher than the Middle East respiratory syndrome in the Middle East countries,similar to severe acute respiratory syndrome,but lower than MERS in the Republic of Korea.
基金We would like to express our thankfulness for funding provided from CORPD1F0013 and CORPD1J0052 from Chang Gung Memorial Hospital,Microbiota Research Center from Chang Gung Universitythe Research Center for Emerging Viral Infections from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project(MOST109-2634-F-182-001,109-2320-B-030-010,109-2327-B-182-001).
文摘Traditional Chinese Medicine(TCM)has been extensively used to ameliorate diseases in Asia for over thousands of years.However,owing to a lack of formal scientific validation,the absence of information regarding the mechanisms underlying TCMs restricts their application.After oral administration,TCM herbal ingredients frequently are not directly absorbed by the host,but rather enter the intestine to be transformed by gut microbiota.The gut microbiota is a microbial community living in animal intestines,and functions to maintain host homeostasis and health.Increasing evidences indicate that TCM herbs closely affect gut microbiota composition,which is associated with the conversion of herbal components into active metabolites.These may significantly affect the therapeutic activity of TCMs.Microbiota analyses,in conjunction with modern multiomics platforms,can together identify novel functional metabolites and form the basis of future TCM research.
基金supported by a grant from the open fund ofKey Laboratory of Molecular Imaging of Hubei Province(No.2008-72)
文摘This study explored whether the transplantation of modified marrow stromal cells (MSCs) has angiogenic effects in a left middle cerebral artery occlusion infarction/reperfusion (MCAO I/R) rat model and preliminarily examined the mechanism of angiogenesis following cerebral infarction.MSCs were isolated by using a direct adherent method and cultured.Vascular endothelial growth factor (VEGF) was transfected into MSCs by employing the liposome transfection.The transfection efficiency was measured by the optical density method.The protein expression of VEGF gene before and after transfection was measured by Western blotting.SD rat model of transient occlusion of the left middle cerebral artery was established by using an approach of intra-luminal occlusion.Tetrazolium (TTC) and HE staining were performed to observe the cerebral infarction.ELISAs were used to measure the levels of VEGF in the rat cerebral tissues.The expression patterns of angiopoietin-2 (Ang-2) and CD34 in cells surrounding the area of infarction were immunohistochemistrically oserved.Ang-2 protein expression in the tissue surrounding the area of infarction was measured by Western blotting.VEGF expression in the MSCs increased after transfection at a rate of approximately 28%±3.4%.ELISA showed that the expression of VEGF in the cerebral tissue was significantly increased after induction of infarction,peaking on the 4th day and decreasing to the levels of the sham surgery group (normal) within 7 to 10 days.The VEGF level was significantly higher at each time point in the VEGF-MSC and MSC groups compared to the model group.Moreover,the VEGF level was higher in the VEGF-MSC group than in the MSC group and stayed relatively high until the 10th day.The immunohistochemical results showed that 10 days after the infarction,the number of Ang-2 and CD34-expressing cells in the area surrounding the infarction was significantly higher in the VEGF-MSC group and the MSC group compared to the model group.Moreover,the VEGF level was higher in the VEGF-MSC group tha
基金supported by the National Natural Science Foundation of China (11621505, 11435002, 31671016)
文摘Precise nanomedicine has been extensively explored for efficient cancer imaging and targeted cancer therapy, as evidenced by a few breakthroughs in their preclinical and clinical explorations. Here, we demonstrate the recent advances of intelligent cancer nanomedicine, and discuss the comprehensive understanding of their structure-function relationship for smart and efficient cancer nanomedicine including various imaging and therapeutic applications, as well as nanotoxicity. In particular, a few emerging strategies that have advanced cancer nanomedicine are also highlighted as the emerging focus such as tumor imprisonment, supramolecular chemotherapy, and DNA nanorobot. The challenge and outlook of some scientific and engineering issues are also discussed in future development. We wish to highlight these new progress of precise nanomedicine with the ultimate goal to inspire more successful explorations of intelligent nanoparticles for future clinical translations.
基金supported by the National Natural Science Foundation of China(31730036,31871380,31871382,31930055,31930058,32000500,32022034,32030033,32070730,32130046,3217050247,32150005,32200595,32222024,81730019,81730022,81830014,81921006,81925005,81970426,81971301,81971312,82030041,82061160495,82070805,82071595,82090020,82100841,82120108009,82122024,82125002,82125011,82125012,82130045,82171284,82173061,82173398,82225007,82225015,82225017,82225018,82230047,82230088,82271600,91949106,91949201,92049116,92049302,92049304,92149303,92149306,92157202,92168201,92169102,92249301,92268201)the National Key Research and Development Program of China(2018YFA0800700,2018YFC2000100,2018YFC2000102,2018YFC2002003,2019YFA0110900,2019YFA0801703,2019YFA0801903,2019YFA0802202,2019YFA0904800,2020YFA0113400,2020YFA0803401,2020YFA0804000,2020YFC2002900,2020YFC2008000,2020YFE0202200,2021YFA0804900,2021YFA1100103,2021YFA1100900,2021YFE0114200,2021ZD0202400,2022YFA0806001,2022YFA0806002,2022YFA0806600,2022YFA1103200,2022YFA1103601,2022YFA1103701,2022YFA1103800,2022YFA1103801,2022YFA1104100,2022YFA1104904,2022YFA1303000,2022YFC2009900,2022YFC2502401,2022YFC3602400,2022YFE0118000,2022ZD0213200)+9 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA16030302,XDB39000000,XDB39030600)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2020085,2021080)CAS Project for Young Scientists in Basic Research(YSBR-076)the Program of the Beijing Natural Science Foundation(JQ20031)Clinical Research Operating Fund of Central High level hospitals(2022-PUMCHE-001)CAMS Innovation Fund for Medical Sciences(CIFMS)(2022-I2M1-004)Talent Program of the Chinese Academy of Medical Science(2022RC310-10)Research Funds from Health@Inno HK Program launched by Innovation Technology Commission of the Hong Kong Special Administrative Region,Guangdong Basic and Applied Basic Research Foundation(2020B1515020044)Guangzhou Planned Project of Science and Technology(202002020039)the Major Technology Innovation of Hubei Province(2019ACA14
文摘Aging biomarkers are a combination of biological parameters to(i)assess age-related changes,(ii)track the physiological aging process,and(iii)predict the transition into a pathological status.Although a broad spectrum of aging biomarkers has been developed,their potential uses and limitations remain poorly characterized.An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research:How old are we?Why do we get old?And how can we age slower?This review aims to address this need.Here,we summarize our current knowledge of biomarkers developed for cellular,organ,and organismal levels of aging,comprising six pillars:physiological characteristics,medical imaging,histological features,cellular alterations,molecular changes,and secretory factors.To fulfill all these requisites,we propose that aging biomarkers should qualify for being specific,systemic,and clinically relevant.
文摘In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a promising feedstock.This review focuses on the state-of-the-art catalytic transformation of lignocellulosic biomass into value-added chemicals and fuels.Following a brief introduction on the structure,major resources and pretreatment methods of lignocellulosic biomass,the catalytic conversion of three main components,i.e.,cellulose,hemicellulose and lignin,into various compounds are comprehensively discussed.Either in separate steps or in one-pot,cellulose and hemicellulose are hydrolyzed into sugars and upgraded into oxygen-containing chemicals such as 5-HMF,furfural,polyols,and organic acids,or even nitrogen-containing chemicals such as amino acids.On the other hand,lignin is first depolymerized into phenols,catechols,guaiacols,aldehydes and ketones,and then further transformed into hydrocarbon fuels,bioplastic precursors and bioactive compounds.The review then introduces the transformations of whole biomass via catalytic gasification,catalytic pyrolysis,as well as emerging strategies.Finally,opportunities,challenges and prospective of woody biomass valorization are highlighted.
基金Project supported by the National Natural Science Foundation of Chi-na (No. 40432004, 40601086) the Natural Science Foundationof Zhejiang Province (No. Y504109).
文摘All the regulations that define a maximum concentration of metals in the receiving soil are based on total soil metal concentration. However, the potential toxicity of a heavy metal in the soil depends on its speciation and availability. We studied the effects of heavy metal speciation and availability on soil microorganism activities along a Cu/Zn contamination gradient. Microbial biomass and enzyme activity of soil contaminated with both Cu and Zn were investigated. The results showed that microbial biomass was negatively affected by the elevated metal levels. The microbial biomass-C (Cmic)/organic C (Corg) ratio was closely correlated to heavy metal stress. There were negative correlations between soil microbial biomass, phosphatase activity and NH4NO3 extractable heavy metals. The soil microorganism activity could be predicted using empirical models with the availability of Cu and Zn. We observed that 72% of the variation in phosphatase activity could be explained by the NH4NO3-extractable and total heavy metal concentration. By considering different monitoring approaches and different viewpoints, this set of methods applied in this study seemed sensitive to site differences and contributed to a better understanding of the effects of heavy metals on the size and activity of microorganisms in soils. The data presented demonstrate the relationship between heavy metals availability and heavy metal toxicity to soil microorganism along a contamination gradient.
文摘Research on two-dimensional(2D) materials has been explosively increasing in last seventeen years in varying subjects including condensed matter physics, electronic engineering, materials science, and chemistry since the mechanical exfoliation of graphene in 2004. Starting from graphene, 2D materials now have become a big family with numerous members and diverse categories. The unique structural features and physicochemical properties of 2D materials make them one class of the most appealing candidates for a wide range of potential applications. In particular, we have seen some major breakthroughs made in the field of 2D materials in last five years not only in developing novel synthetic methods and exploring new structures/properties but also in identifying innovative applications and pushing forward commercialisation. In this review, we provide a critical summary on the recent progress made in the field of 2D materials with a particular focus on last five years. After a brief backgroundintroduction, we first discuss the major synthetic methods for 2D materials, including the mechanical exfoliation, liquid exfoliation, vapor phase deposition, and wet-chemical synthesis as well as phase engineering of 2D materials belonging to the field of phase engineering of nanomaterials(PEN). We then introduce the superconducting/optical/magnetic properties and chirality of 2D materials along with newly emerging magic angle 2D superlattices. Following that, the promising applications of 2D materials in electronics, optoelectronics, catalysis, energy storage, solar cells, biomedicine, sensors, environments, etc. are described sequentially. Thereafter, we present the theoretic calculations and simulations of 2D materials. Finally, after concluding the current progress, we provide some personal discussions on the existing challenges and future outlooks in this rapidly developing field.
文摘Recent advances in systemic and locoregional treatments for patients with unresectable or advanced hepatocellular carcinoma(HCC)have resulted in improved response rates.This has provided an opportunity for selected patients with initially unresectable HCC to achieve adequate tumor downstaging to undergo surgical resection,a‘conversion therapy’strategy.However,conversion therapy is a new approach to the treatment of HCC and its practice and treatment protocols are still being developed.Review the evidence for conversion therapy in HCC and develop consensus statements to guide clinical practice.Evidence review:Many research centers in China have accumulated significant experience implementing HCC conversion therapy.Preliminary findings and data have shown that conversion therapy represents an important strategy to maximize the survival of selected patients with intermediate stage to advanced HCC;however,there are still many urgent clinical and scientific challenges for this therapeutic strategy and its related fields.In order to summarize and learn from past experience and review current challenges,the Chinese Expert Consensus on Conversion Therapy for Hepatocellular Carcinoma(2021 Edition)was developed based on a review of preliminary experience and clinical data from Chinese and non-Chinese studies in this field and combined with recommendations for clinical practice.Sixteen consensus statements on the implementation of conversion therapy for HCC were developed.The statements generated in this review are based on a review of clinical evidence and real clinical experience and will help guide future progress in conversion therapy for patients with HCC.
基金supported by grants from the National Natural Science Foundation of China(Nos.41722501,91544212,51778596,41575021,41875043,and 41977184)the National Key Research and Development Program of China(Nos.2018YFC0213104,2017YFC0210002,and 2016YFC0203302)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23020301)the National Key Project for Causes and Control of Heavy Air Pollution(Nos.DQGG0102 and DQGG0205)the Major Projects of High Resolution Earth Observation Systems of National Science and Technology(05-Y30B01-9001-19/20-1).
文摘Abundances of a range of air pollutants can be inferred from satellite UV-Vis spectroscopy measurements by using the unique absorption signatures of gas species.Here,we implemented several spectral fitting methods to retrieve tropospheric NO_(2),SO_(2),and HCHO from the ozone monitoring instrument(OMI),with radiative simulations providing necessary information on the interactions of scattered solar light within the atmosphere.We analyzed the spatial distribution and temporal trends of satellite-observed air pollutants over eastern China during 2005-2017,especially in heavily polluted regions.We found significant decreasing trends in NO_(2) and SO_(2) since 2011 over most regions,despite varying temporal features and turning points.In contrast,an overall increasing trend was identified for tropospheric HCHO over these regions in recent years.Furthermore,generalized additive models were implemented to understand the driving forces of air quality trends in China and assess the effectiveness of emission controls.Our results indicated that although meteorological parameters,such as wind,water vapor,solar radiation and temperature,mainly dominated the day-to-day and seasonal fluctuations in air pollutants,anthropogenic emissions played a unique role in the long-term variation in the ambient concentrations of NO_(2),SO_(2),and HCHO in the past 13 years.Generally,recent declines in NO_(2) and SO_(2) could be attributed to emission reductions due to effective air quality policies,and the opposite trends in HCHO may urge the need to control anthropogenic volatile organic compound(VOC)emissions.
基金the USDA National Institute of Food and Agriculture McIntire Stennis project(IND011523MS).
文摘The Normalized Diff erence Vegetation Index(NDVI),one of the earliest remote sensing analytical products used to simplify the complexities of multi-spectral imagery,is now the most popular index used for vegetation assessment.This popularity and widespread use relate to how an NDVI can be calculated with any multispectral sensor with a visible and a near-IR band.Increasingly low costs and weights of multispectral sensors mean they can be mounted on satellite,aerial,and increasingly—Unmanned Aerial Systems(UAS).While studies have found that the NDVI is effective for expressing vegetation status andquantified vegetation attributes,its widespread use and popularity,especially in UAS applications,carry inherent risks of misuse with end users who received little to no remote sensing education.This article summarizes the progress of NDVI acquisition,highlights the areas of NDVI application,and addresses the critical problems and considerations in using NDVI.Detailed discussion mainly covers three aspects:atmospheric eff ect,saturation phenomenon,and sensor factors.The use of NDVI can be highly eff ective as long as its limitations and capabilities are understood.This consideration is particularly important to the UAS user community.
基金financially supported by the National Natural Science Foundation of China(51774051,52072323,52122211)the Science and Technology Planning Project of Hunan Province(2019RS2034)+1 种基金the Hunan High-tech Industry Science and Technology Innovation Leading Plan(2020GK2072)the Changsha City Fund for Distinguished and Innovative Young Scholars(KQ1707014)。
文摘Ni-rich layered oxides are considered promising cathodes for advanced lithium-ion batteries(LIBs)in the future,owing to their high capacity and low cost.However,the issues on structural and interfacial stability of Ni-rich cathodes still pose substantial obstacles in the practical application of advanced LIBs.Here,we employ a one-step method to synthesize a B-doped and La_(4)NiLiO_(8)-coated LiNi_(0.82)5Co_(0.115)Mn_(0.06)O_(2)(BL-1)cathode with reliable structure and interface,for the first time.The La_(4)NiLiO_(8)coating layer can prevent cathodes from electrolyte assault and facilitate Li+diffusion kinetics.Moreover,B-doping can effectively restrain the pernicious H_(2)-H_(3) phase transition and adjust the orientation of primary particles to a radial alignment,which is obstructive to the arise of microcracks induced by the change of anisotropic volume.Specifically,when tested in pouch cells,the BL-1 cathode exhibits outstanding capacity retention of 93.49%after 500 cycles at 1 C.This dual-modification strategy dramatically enhances the stability of the structure and interface for Ni-rich cathode materials,consequently accelerating the commercialization process of high-energy–density LIBs.
基金supported by the National Science Foundation of China(nos.22071105 and 22031008)the Qinglan Project of Jiangsu Education Department.
文摘Although the combination of electrochemistry and homogeneous catalysis has proven to be a powerful strategy for achieving a diverse array of novel transformations,some challenges such as controlling the diffusion of catalyst-related species and the instability of catalysts at electrodes remain to be overcome.Herein,we review recent advances in electrochemical homogeneous catalysis,focusing on electrochemical noble-transition-metal catalysis,photoelectrochemical catalysis,and electrochemical enantioselective catalysis.The topics discussed include:(1)how the noblemetal catalystworks in the presence of cathodic hydrogen evolution,(2)how the photocatalyst gets enhanced redox property,and(3)how the enantioselectivity is regulated in a catalytic electrochemical reaction.
基金financially supported by the State Key Project of Research and Development (No. 2016YFC1100300)the National Natural Science Foundation of China (No. 21203158, 21773199, and 21621091)。
文摘Layered double hydroxide(LDH) has been widely developed in the field of corrosion and protection in recent years based on its unique characteristics including anion capacity, anion exchange ability, structure memory effect, and barrier resistance. This paper comprehensively reviews recent work on the preparations, properties of LDH in the forms of powder and film and their applications in different environments in corrosion and protection. Some novel perspectives are also proposed at the end of the review for future research in corrosion and protection field.
文摘Background Dry eye is a multifactorial disease of the tears and the ocular surface.This study aimed to investigate the clinical efficacy of a non-steroidal anti-inflammatory drug,pranoprofen,in the treatment of dry eye.Methods It is a prospective,multi-center,randomized,controlled,parallel group study.One hundred and fifteen patients with mild to moderate dry eye disease (55-60 in each treatment group) participated in this multi-center study.Patients were randomly administered with eyedrops containing 0.1% pranoprofen (PRA) plus 0.1% sodium hyaluronate (SH) or SH only,three times daily for 28 days,followed by a 1-week after treatment observation.Dry eye symptom score (DESS),fluorescein corneal staining (FLCS),tear break-up time (TBUT),and Shirmer 1 tear test (ST1,without anesthesia) were evaluated or conducted before treatment and at each study visit.Conjunctival impression cytology was taken from the patients treated with PRA plus SH before and after treatment and real-time polymerase chain reaction (RT-PCR) was performed to detect the changes of human leukocyte antigen DR (HLA-DR) and intercellular adhesion molecule 1 (ICAM-1).Results Patients treated with PRA plus SH showed gradual improvements of DESS,FLCS,and TBUT.Between-group comparisons of FLCS and TBUT have statistically significant differences from day 14.Good tolerance with no severe adverse events was found in both groups.Patients treated with PRA plus SH had a reduced expression level of HLA-DR and were statistically different after 28 days of therapy.Conclusions The application of PRA at a dose of 0.1% was well tolerated and benefited to the patients with mild to moderate dry eye disease.The underlying mechanism of its efficacy may be associated with the reduction of inflammatory factors of conjunctival epithelial cells.
基金supported by the National Natural Science Foundation of China (No.40676064,30530150)the Guangdong-HK Technology Cooperation Funding Scheme (No.08-Lh-04)+1 种基金the Key Laboratory of Nuclear Resources and Environment (East China Institute of Technology), the Ministry of Education (No.070717,081203)the State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry, Chinese Academy of Sciences,and the National Supporting Projects of Science & Technology in Forestry (2009BADB2B0605)
文摘Estuaries are important sites for mercury (Hg) methylation, with sulfate-reducing bacteria (SRB) thought to be the main Hg methylators. Distributions of total mercury (THg) and methylmercury (MeHg) in mangrove sediment and sediment core from Jiulong River Estuary Provincial Mangrove Reserve, China were determined and the possible mechanisms of Hg methylation and their controlling factors in mangrove sediments were investigated. Microbiological and geochemical parameters were also determined. Results showed that SRB constitute a small fraction of total bacteria (TB) in both surface sediments and the profile of sediments. The content of THg, MeHg, TB, and SRB were (350 ± 150) ng/g, (0.47 ± 0.11) ng/g, (1.4× 10^011 ± 4.1 × 10^9) cfu/g dry weight (dw), and (5.0× 10^6 d: 2.7 × 10^6) cfu/g dw in surficial sediments, respectively, and (240 ± 24) ng/g, (0.30 ± 0.15) ng/g, (1.9 × 10^11 ± 4.2 × 10^9) cfu/g dw, and (1.3 × 10^6 ± 2.0 × 10^6) cfu/g dw in sediment core, respectively. Results showed that THg, MeHg, TB, MeHg/THg, salinity and total sulfur (TS) increased with depth, but total organic matter (TOM), SRB, and pH decreased with depth. Concentrations of MeHg in sediments showed significant positive correlation with THg, salinity, TS, and MeHg/THg, and significant negative correlation with SRB, TOM, and pH. It was concluded that other microbes, rather than SRB, may also act as main Hg methylators in mangrove sediments.
基金funded by Innovent biologics,Inc.Eli Lilly and Companypartly supported by China National Major Project for New Drug Innovation(2017ZX09304015).
文摘Background:Treatment options for Chinese patients with locally advanced or metastatic squamous-cell non-small-cell lung cancer(sqNSCLC)after failure of first-line chemotherapy are limited.This study(ORIENT-3)aimed to evaluate the efficacy and safety of sintilimab versus docetaxel as second-line treatment in patients with locally advanced or metastatic sqNSCLC.Methods:ORIENT-3 was an open-label,multicenter,randomized controlled phase 3 trial that recruited patients with stage IIIB/IIIC/IV sqNSCLC after failure with first-line platinum-based chemotherapy.Patients were randomized in a 1:1 ratio to receive either 200 mg of sintilimab or 75 mg/m^(2) of docetaxel intravenously every 3 weeks,stratified by the Eastern Cooperative Oncology Group performance status.The primary endpoint was overall survival(OS)in the full analysis set(FAS).Secondary endpoints included progression-free survival(PFS),objective response rate(ORR),disease control rate(DCR),duration of response(DoR)and safety.Results:Between August 25,2017,and November 7,2018,290 patients were randomized.For FAS,10 patients fromthe docetaxel armwere excluded.Themedian OS was 11.79(n=145;95%confidence interval[CI],10.28-15.57)months with sintilimab versus 8.25(n=135;95%CI,6.47-9.82)months with docetaxel(hazard ratio[HR]:0.74;95%CI,0.56-0.96;P=0.025).Sintilimab treatment significantly prolonged PFS(median 4.30 vs.2.79 months;HR:0.52;95%CI,0.39-0.68;P<0.001)and showed higher ORR(25.50%vs.2.20%,P<0.001)and DCR(65.50%vs.37.80%,P<0.001)than the docetaxel arm.The median DoRwas 12.45(95%CI,4.86-25.33)months in the sintilimab arm and 4.14(95%CI,1.41-7.23)months in the docetaxel arm(P=0.045).Treatment-related adverse events of grade≥3were reported in 26(18.1%)patients in the sintilimab arm and 47(36.2%)patients in the docetaxel arm.Exploratory biomarker analysis showed potential predictive values of expression levels of two transcription factors,including OVOL2(HR:0.35;P<0.001)and CTCF(HR:3.50;P<0.001),for sintilimab treatment.Conclusions:Compared with docetaxel,sintili
基金the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21572041 and 21772030)for the financial support
文摘Owing to its nice performance, low cost, and simple solution-processing, organic-inorganic hybrid perovskite solar cell(PSC) becomes a promising candidate for next-generation high-efficiency solar cells.The power conversion efficiency(PCE) has boosted from 3.8% to 25.2% over the past ten years. Despite the rapid progress in PCE, the device stability is a key issue that impedes the commercialization of PSCs. Recently, all-inorganic cesium lead halide perovskites have attracted much attention due to their better stability compared with their organic-inorganic counterpart. In this progress report, we summarize the properties of CsPb(IxBr1-x)3 and their applications in solar cells. The current challenges and corresponding solutions are discussed. Finally, we share our perspectives on CsPb(IxBr1-x)3 solar cells and outline possible directions to further improve the device performance.
基金the National Key R&D Program of China(2018YFA0209500)the National Natural Science Foundation of China(21621091 and 21975209)the Fundamental Research Funds for the Central Universities(20720190037)。
文摘Pressing need goes ahead for accessing freshwater in insufficient supply countries and regions,which will become a restrictive factor for human development and production.In recent years,solar-driven water evaporation(SDWE)systems have attracted increasing attention for their specialty in no consume conventional energy,pollution-free,and the high purity of fresh water.In particular,carbon-based photothermal conversion materials are preferred light-absorbing material for SDWE systems because of their wide range of spectrum absorption and high photothermal conversion efficiency based on superconjugate effect.Until now,many carbon-based SDWE systems have been reported,and various structures emerged and were designed to enhance light absorption,optimize heat management,and improve the efficient water transport path.In this review,we attempt to give a comprehensive summary and discussions of structure progress of the carbon-based SDWE systems and their working mechanisms,including carbon nanoparticles systems,single-layer photothermal membrane systems,bi-layer structural photothermal systems,porous carbon-based materials systems,and three dimensional(3D)systems.In these systems,the latest 3D systems can expand the light path by allowing light to be reflected multiple times in the microcavity to increase the light absorption rate,and its large heat exchange area can prompt more water to evaporate,which makes them the promising application foreground.We hope our review can spark the probing of underlying principles and inspiring design strategies of these carbonbased SDWE systems,and further guide device optimizations,eventually promoting in extensive practical applications in the future.
基金funding from the National Natural Science Foundation of China (21567008, 21707055)the Program for Innovative Research Team of Guangdong University of Petrochemical Technology+4 种基金the Yangfan talents Project of Guangdong Provincethe Innovation-driven “5511” Program in Jiangxi Province (20165BCB18014)the Funding Program for Academic and Technological Leaders of Major Disciplines in Jiangxi Province (20172BCB22018)the Program for New Century Excellent Talents in Fujian Province Universitythe Natural Science Foundation for Distinguished Young Scholars of Hunan Province, China (2017JJ1026)~~
文摘Novel SiO2/BiOCl composites were fabricated by decorating BiOCl nanosheets with SiO2 nanoparticles via a simple hydrothermal process. The as-prepared pure BiOCl and SiO2/BiOCl composites were intensively characterized by various techniques such as XRD, FT-IR, SEM/TEM, BET, UV-vis, DRS, XPS, and photocurrent measurements. The SiO2/BiOCl composite nanosheets displayed high photocatalytic activity and excellent stability in the degradation of organic pollutants such as phenol, bisphenol A (BPA), and rhodamine B (RhB). With respect to those over bare BiOCl, the degradation rates of RhB, BPA, and phenol over 1.88% SiO2/BiOCl increased 16.5%, 29.0%, and 38.7%, respectively. Radical capturing results suggested that h^+ is the major reactive species and that hydroxyl (·OH) and superoxide (·O2^-) radicals could also be involved in the degradation of organic pollutants. The enhanced photocatalytic performances of SiO2/BiOCl composites can be mainly attributed to the improved texture and the formation of intimate SiO2/BiOCl interfaces, which largely promoted the adsorption of organic pollutants, enhanced the light harvesting, and accelerated the separation of e^– and h^+.