A special kind of rice field exists in China that is flooded year-round. These rice fields have substantially large CH4 emissions during the rice-growing season and emit CH4 continuously in the non-rice growing season...A special kind of rice field exists in China that is flooded year-round. These rice fields have substantially large CH4 emissions during the rice-growing season and emit CH4 continuously in the non-rice growing season. CH4 emission factors were used to estimate the CH4 emissions from year-round flooded rice fields during the rice-growing season in China. The CH4 emissions for the year-round flooded rice fields in China for the rice growing season over a total area of 2.66 Mha were estimated to be 2.44 Tg CH…展开更多
The rice Xa21 gene, which confers resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), encodes a receptor-like kinase, Few components involved in transducing the Xa21-mediated defense response h...The rice Xa21 gene, which confers resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), encodes a receptor-like kinase, Few components involved in transducing the Xa21-mediated defense response have yet been identified. Here, we report that XA21 binds to a WRKY transcription factor, called OsWRKY62. The OsWRKY62 gene encodes two splice variants (OsWRKY62.1 and OsWRKY62.2). OsWRKY62.1:smGFP2 and OsWRKY62.2:smGFP2 fusion pro- teins partially localize to the nucleus. Transgenic plants overexpressing OsWRKY62.1 are compromised in basal defense and Xa21-mediated resistance to Xoo. Furthermore, overexpression of OsWRKY62.1 suppresses the activation of defenserelated genes. These results imply that OsWRKY62 functions as a negative regulator of innate immunity in rice, and serves as a critical mediator of both basal and race-specific defense responses.展开更多
Field trials were performed to evaluate various techniques for measuring spray deposition and aerial drift during spray application to paddy field.The application of a spraying agent containing the fluorescent dye Rho...Field trials were performed to evaluate various techniques for measuring spray deposition and aerial drift during spray application to paddy field.The application of a spraying agent containing the fluorescent dye Rhodamine-B was applied by an unmanned aerial vehicle(UAV)which flew at a height of 5 m,a speed of 3 m/s,and the wind speed of 3 m/s.The results showed that because the downdraft produced by a helicopter rotor increased the penetrability of crops,there is a higher deposition on the upper layer and the under layer than the traditional spraying.The average deposition on the upper layer accounts for 28% of the total spraying,the deposition on the under layer accounts for 26% of the total spraying.The deposition on the under layer takes up 92.8% of the deposition on the upper layer.Droplets drift data showed that the drift of non-target area took up 12.9% of the total liquid spray.The 90% drifting droplets were located within a range of 8 m of the target area;the drift quantity was almost zero at a distance of 50 m away from the treated area.展开更多
Carotenoids are a diverse group of pigments widely distributed in nature.The vivid yellow,orange,and red colors of many horticultural crops are attributed to the overaccumulation of carotenoids,which contribute to a c...Carotenoids are a diverse group of pigments widely distributed in nature.The vivid yellow,orange,and red colors of many horticultural crops are attributed to the overaccumulation of carotenoids,which contribute to a critical agronomic trait for flowers and an important quality trait for fruits and vegetables.Not only do carotenoids give horticultural crops their visual appeal,they also enhance nutritional value and health benefits for humans.As a result,carotenoid research in horticultural crops has grown exponentially over the last decade.These investigations have advanced our fundamental understanding of carotenoid metabolism and regulation in plants.In this review,we provide an overview of carotenoid biosynthesis,degradation,and accumulation in horticultural crops and highlight recent achievements in our understanding of carotenoid metabolic regulation in vegetables,fruits,and flowers.展开更多
Carotenoids are indispensable to plants and critical in human diets. Plastids are the organelles for carotenoid biosynthesis and storage in plant cells. They exist in various types, which include proplastids, etioplas...Carotenoids are indispensable to plants and critical in human diets. Plastids are the organelles for carotenoid biosynthesis and storage in plant cells. They exist in various types, which include proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. These plastids have dramatic differences in their capacity to synthesize and sequester carotenoids. Clearly, plastids play a central role in governing carotenogenic activity, carotenoid stability, and pigment diversity. Understanding of carotenoid metabolism and accumulation in various plastids expands our view on the multifaceted regulation of carotenogenesis and facilitates our efforts toward developing nutrient-enriched food crops. In this review, we provide a comprehensive overview of the impact of various types of plastids on carotenoid biosynthesis and accumulation, and discuss recent advances in our understanding of the regulatory control of carotenogenesis and metabolic engineering of carotenoids in light of plastid types in plants.展开更多
Using Landsat TM data of 1988, 1998 and 2001, the dynamic process of the spatial-temporal characteristics of land use changes during 13 years from 1988 to 2001 in the special economic zone of Xiamen, China was analyze...Using Landsat TM data of 1988, 1998 and 2001, the dynamic process of the spatial-temporal characteristics of land use changes during 13 years from 1988 to 2001 in the special economic zone of Xiamen, China was analyzed to improve understanding and to find the driving forces of land use change so that sustainable land utilization could be practiced. During the 13 years cropland decreased remarkably by nearly 11304.95 ha. The areas of rural-urban construction and water body increased by 10 152.24 ha and 848.94 ha, respectively. From 1988 to 2001, 52.5% of the lost cropland was converted into rural-urban industrial land. Rapid urbanization contributed to a great change in the rate of cropland land use during these years. Land-reclamation also contributed to a decrease in water body area as well as marine ecological and environmental destruction. In the study area 1) urbanization and industrialization, 2) infrastructure and agricultural intensification, 3) increased affluence of the farming community, and 4) policy factors have driven the land use changes. Possible sustainable land use measures included construction of a land management system, land planning, development of potential land resources, new technology applications, and marine ecological and environmental protection.展开更多
Plants respond to insect herbivory with responses broadly known as direct defenses, indirect defenses, and tolerance. Direct defenses include all plant traits that affect susceptibility of host plants by themselves. O...Plants respond to insect herbivory with responses broadly known as direct defenses, indirect defenses, and tolerance. Direct defenses include all plant traits that affect susceptibility of host plants by themselves. Overall categories of direct plant defenses against insect herbivores include limiting food supply, reducing nutrient value, reducing preference, disrupting physical structures, and inhibiting chemical pathways of the attacking insect. Major known defense chemicals include plant secondary metabolites, protein inhibitors of insect digestive enzymes, proteases, lectins, amino acid deaminases and oxidases. Multiple factors with additive or even synergistic impact are usually involved in defense against a specific insect species, and factors of major importance to one insect species may only be of secondary importance or not effective at all against another insect species. Extensive qualitative and quantitative high throughput analyses of temporal and spatial variations in gene expression, protein level and activity, and metabolite concentration will accelerate not only the understanding of the overall mechanisms of direct defense, but also accelerate the identification of specific targets for enhancement of plant resistance for agriculture.展开更多
Cadmium(Cd) contamination has posed an increasing challenge to environmental quality and food security. In recent years,phytoremediation has been particularly scrutinized because it is cost-effective and environmental...Cadmium(Cd) contamination has posed an increasing challenge to environmental quality and food security. In recent years,phytoremediation has been particularly scrutinized because it is cost-effective and environmentally friendly, especially the use of metal-hyperaccumulating plants to extract or mine heavy metals from polluted soils. Under Cd stress, responses of hyperaccumulator and non-hyperaccumulator plants differ in morphological responses and physiological processes such as photosynthesis and respiration,uptake, transport, and assimilation of minerals and nitrogen, and water uptake and transport, which contribute to their ability to accumulate and detoxify Cd. This review aims to provide a brief overview of the recent progresses in the differential responses of hyperaccumulator and non-accumulator plants to Cd toxicity in terms of growth and physiological processes. Such information might be useful in developing phytoremediation technology for contaminated soils.展开更多
The Cucurbita genus contains several economically important species in the Cucurbitaceae family. Here, we report high-quality genome sequences of C. maxima and C. moschata and provide evidence supporting an allotetrap...The Cucurbita genus contains several economically important species in the Cucurbitaceae family. Here, we report high-quality genome sequences of C. maxima and C. moschata and provide evidence supporting an allotetraploidization event in Cucurbita. We are able to partition the genome into two homoeologous subgenomes based on different genetic distances to melon, cucumber, and watermelon in the Benincaseae tribe. We estimate that the two diploid progenitors successively diverged from Benincaseae around 31 and 26 million years ago (Mya), respectively, and the allotetraploidization happened at some point between 26 Mya and 3 Mya, the estimated date when C. maxima and C. moschata diverged. The subgenomes have largely maintained the chromosome structures of their diploid progenitors. Such long-term karyotype stability after polyploidization has not been commonly observed in plant polyploids. The two subgenomes have retained similar numbers of genes, and neither subgenome is globally dominant in gene expression. Allele-specific expression analysis in the C. maxima ×C. moschata interspecific F1 hybrid and their two parents indicates the predominance of trans-regulatory effects underlying expression divergence of the parents, and detects transgressive gene expression changes in the hybrid correlated with heterosis in important agronomic traits. Our study provides insights into polyploid genome evolution and valuable resources for genetic improvement of cucurbit crops.展开更多
The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased s...The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essentialfunctions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.展开更多
Thermal blanching is an essential operation for many fruits and vegetables processing.It not only contributes to the inactivation of polyphenol oxidase(PPO),peroxidase(POD),but also affects other quality attributes of...Thermal blanching is an essential operation for many fruits and vegetables processing.It not only contributes to the inactivation of polyphenol oxidase(PPO),peroxidase(POD),but also affects other quality attributes of products.Herein we review the current status of thermal blanching.Firstly,the purposes of blanching,which include inactivating enzymes,enhancing drying rate and product quality,removing pesticide residues and toxic constituents,expelling air in plant tissues,decreasing microbial load,are examined.Then,the reason to why indicators such as POD and PPO,ascorbic acid,color,and texture are frequently used to evaluate blanching process is summarized.After that,the principles,applications and limitations of current thermal blanching methods,which include conventional hot water blanching,steam blanching,microwave blanching,ohmic blanching,and infrared blanching are outlined.Finally,future trends are identified and discussed.展开更多
Four rice samples of long grain type were tested using an electronic nose (Cyranose-320).Samples of 5 g of each variety of rice were placed individually in vials and were analyzed with the electronic nose unit consist...Four rice samples of long grain type were tested using an electronic nose (Cyranose-320).Samples of 5 g of each variety of rice were placed individually in vials and were analyzed with the electronic nose unit consisting of 32 polymer sensors.The Cyranose-320 was able to differentiate between varieties of rice.The chemical composition of the rice odors for differentiating rice samples needs to be investigated.The optimum parameter settings should be considered during the Cyranose-320 training process especially for multiple samples,which are helpful for obtaining an accurate training model to improve identification capability.Further,it is necessary to investigate the E-nose sensor selection for obtaining better classification accuracy.A re- duced number of sensors could potentially shorten the data processing time,and could be used to establish an application pro- cedure and reduce the cost for a specific electronic nose.Further research is needed for developing analytical procedures that adapt the Cyranose-320 as a tool for testing rice quality.展开更多
文摘A special kind of rice field exists in China that is flooded year-round. These rice fields have substantially large CH4 emissions during the rice-growing season and emit CH4 continuously in the non-rice growing season. CH4 emission factors were used to estimate the CH4 emissions from year-round flooded rice fields during the rice-growing season in China. The CH4 emissions for the year-round flooded rice fields in China for the rice growing season over a total area of 2.66 Mha were estimated to be 2.44 Tg CH…
文摘The rice Xa21 gene, which confers resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), encodes a receptor-like kinase, Few components involved in transducing the Xa21-mediated defense response have yet been identified. Here, we report that XA21 binds to a WRKY transcription factor, called OsWRKY62. The OsWRKY62 gene encodes two splice variants (OsWRKY62.1 and OsWRKY62.2). OsWRKY62.1:smGFP2 and OsWRKY62.2:smGFP2 fusion pro- teins partially localize to the nucleus. Transgenic plants overexpressing OsWRKY62.1 are compromised in basal defense and Xa21-mediated resistance to Xoo. Furthermore, overexpression of OsWRKY62.1 suppresses the activation of defenserelated genes. These results imply that OsWRKY62 functions as a negative regulator of innate immunity in rice, and serves as a critical mediator of both basal and race-specific defense responses.
基金Special Fund for Agro-scientific Research in the Public Interest(201203025)by Ministry of Agriculture,Chinathe National High Technology Research and Development Program of China(SS2013AA100303).
文摘Field trials were performed to evaluate various techniques for measuring spray deposition and aerial drift during spray application to paddy field.The application of a spraying agent containing the fluorescent dye Rhodamine-B was applied by an unmanned aerial vehicle(UAV)which flew at a height of 5 m,a speed of 3 m/s,and the wind speed of 3 m/s.The results showed that because the downdraft produced by a helicopter rotor increased the penetrability of crops,there is a higher deposition on the upper layer and the under layer than the traditional spraying.The average deposition on the upper layer accounts for 28% of the total spraying,the deposition on the under layer accounts for 26% of the total spraying.The deposition on the under layer takes up 92.8% of the deposition on the upper layer.Droplets drift data showed that the drift of non-target area took up 12.9% of the total liquid spray.The 90% drifting droplets were located within a range of 8 m of the target area;the drift quantity was almost zero at a distance of 50 m away from the treated area.
文摘Carotenoids are a diverse group of pigments widely distributed in nature.The vivid yellow,orange,and red colors of many horticultural crops are attributed to the overaccumulation of carotenoids,which contribute to a critical agronomic trait for flowers and an important quality trait for fruits and vegetables.Not only do carotenoids give horticultural crops their visual appeal,they also enhance nutritional value and health benefits for humans.As a result,carotenoid research in horticultural crops has grown exponentially over the last decade.These investigations have advanced our fundamental understanding of carotenoid metabolism and regulation in plants.In this review,we provide an overview of carotenoid biosynthesis,degradation,and accumulation in horticultural crops and highlight recent achievements in our understanding of carotenoid metabolic regulation in vegetables,fruits,and flowers.
文摘Carotenoids are indispensable to plants and critical in human diets. Plastids are the organelles for carotenoid biosynthesis and storage in plant cells. They exist in various types, which include proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. These plastids have dramatic differences in their capacity to synthesize and sequester carotenoids. Clearly, plastids play a central role in governing carotenogenic activity, carotenoid stability, and pigment diversity. Understanding of carotenoid metabolism and accumulation in various plastids expands our view on the multifaceted regulation of carotenogenesis and facilitates our efforts toward developing nutrient-enriched food crops. In this review, we provide a comprehensive overview of the impact of various types of plastids on carotenoid biosynthesis and accumulation, and discuss recent advances in our understanding of the regulatory control of carotenogenesis and metabolic engineering of carotenoids in light of plastid types in plants.
基金Project supported by the Fujian Provincial Natural Science Foundation of China (No. D0210010).
文摘Using Landsat TM data of 1988, 1998 and 2001, the dynamic process of the spatial-temporal characteristics of land use changes during 13 years from 1988 to 2001 in the special economic zone of Xiamen, China was analyzed to improve understanding and to find the driving forces of land use change so that sustainable land utilization could be practiced. During the 13 years cropland decreased remarkably by nearly 11304.95 ha. The areas of rural-urban construction and water body increased by 10 152.24 ha and 848.94 ha, respectively. From 1988 to 2001, 52.5% of the lost cropland was converted into rural-urban industrial land. Rapid urbanization contributed to a great change in the rate of cropland land use during these years. Land-reclamation also contributed to a decrease in water body area as well as marine ecological and environmental destruction. In the study area 1) urbanization and industrialization, 2) infrastructure and agricultural intensification, 3) increased affluence of the farming community, and 4) policy factors have driven the land use changes. Possible sustainable land use measures included construction of a land management system, land planning, development of potential land resources, new technology applications, and marine ecological and environmental protection.
文摘Plants respond to insect herbivory with responses broadly known as direct defenses, indirect defenses, and tolerance. Direct defenses include all plant traits that affect susceptibility of host plants by themselves. Overall categories of direct plant defenses against insect herbivores include limiting food supply, reducing nutrient value, reducing preference, disrupting physical structures, and inhibiting chemical pathways of the attacking insect. Major known defense chemicals include plant secondary metabolites, protein inhibitors of insect digestive enzymes, proteases, lectins, amino acid deaminases and oxidases. Multiple factors with additive or even synergistic impact are usually involved in defense against a specific insect species, and factors of major importance to one insect species may only be of secondary importance or not effective at all against another insect species. Extensive qualitative and quantitative high throughput analyses of temporal and spatial variations in gene expression, protein level and activity, and metabolite concentration will accelerate not only the understanding of the overall mechanisms of direct defense, but also accelerate the identification of specific targets for enhancement of plant resistance for agriculture.
基金supported by the National Natural Science Foundation of China (No. 41501521)a scholarship from the University of Florida, USA
文摘Cadmium(Cd) contamination has posed an increasing challenge to environmental quality and food security. In recent years,phytoremediation has been particularly scrutinized because it is cost-effective and environmentally friendly, especially the use of metal-hyperaccumulating plants to extract or mine heavy metals from polluted soils. Under Cd stress, responses of hyperaccumulator and non-hyperaccumulator plants differ in morphological responses and physiological processes such as photosynthesis and respiration,uptake, transport, and assimilation of minerals and nitrogen, and water uptake and transport, which contribute to their ability to accumulate and detoxify Cd. This review aims to provide a brief overview of the recent progresses in the differential responses of hyperaccumulator and non-accumulator plants to Cd toxicity in terms of growth and physiological processes. Such information might be useful in developing phytoremediation technology for contaminated soils.
文摘The Cucurbita genus contains several economically important species in the Cucurbitaceae family. Here, we report high-quality genome sequences of C. maxima and C. moschata and provide evidence supporting an allotetraploidization event in Cucurbita. We are able to partition the genome into two homoeologous subgenomes based on different genetic distances to melon, cucumber, and watermelon in the Benincaseae tribe. We estimate that the two diploid progenitors successively diverged from Benincaseae around 31 and 26 million years ago (Mya), respectively, and the allotetraploidization happened at some point between 26 Mya and 3 Mya, the estimated date when C. maxima and C. moschata diverged. The subgenomes have largely maintained the chromosome structures of their diploid progenitors. Such long-term karyotype stability after polyploidization has not been commonly observed in plant polyploids. The two subgenomes have retained similar numbers of genes, and neither subgenome is globally dominant in gene expression. Allele-specific expression analysis in the C. maxima ×C. moschata interspecific F1 hybrid and their two parents indicates the predominance of trans-regulatory effects underlying expression divergence of the parents, and detects transgressive gene expression changes in the hybrid correlated with heterosis in important agronomic traits. Our study provides insights into polyploid genome evolution and valuable resources for genetic improvement of cucurbit crops.
基金supported in part by the National Science Foundation (grants IOS-0752997 and IOS-0918433 to WJL grants IOS#0749731, IOS#051909 to PK)+8 种基金the Department of Energy, Division of Energy Biosciences (grantsDE-FG02-94ER20134 to WJL)the US Department of Agriculture, Agricultural Research Service (under Agreement number58-6250-0-008 to MAG)the Spanish Ministry of Science andInnovation (MICINN) (grants AGL2007-61948 and AGL2009-09018 to AFLM)the Ministry of Education, Science, Sportsand Culture of Japan (grant 19060009 to HF)the JapanSociety for the Promotion of Science (JSPS grant 23227001to HF)the NC-CARP project (to HF)the NationalKey Basic Research Program of China (grant 2012CB114500to XH)the National Natural Science Foundation of China (grant31070156 to XH)the NSFC-JSPS cooperation project(grant 31011140070 to HF and XH)
文摘The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essentialfunctions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.
文摘Thermal blanching is an essential operation for many fruits and vegetables processing.It not only contributes to the inactivation of polyphenol oxidase(PPO),peroxidase(POD),but also affects other quality attributes of products.Herein we review the current status of thermal blanching.Firstly,the purposes of blanching,which include inactivating enzymes,enhancing drying rate and product quality,removing pesticide residues and toxic constituents,expelling air in plant tissues,decreasing microbial load,are examined.Then,the reason to why indicators such as POD and PPO,ascorbic acid,color,and texture are frequently used to evaluate blanching process is summarized.After that,the principles,applications and limitations of current thermal blanching methods,which include conventional hot water blanching,steam blanching,microwave blanching,ohmic blanching,and infrared blanching are outlined.Finally,future trends are identified and discussed.
基金support from the Doctoral Fund of Ministry of Education of China (No 20070224003)oversea research project of Hei-longjiang Province Education Agency, China (No1151HZ01)research project of Heilongjiang Province Education Agency, China (No 10531002).
文摘Four rice samples of long grain type were tested using an electronic nose (Cyranose-320).Samples of 5 g of each variety of rice were placed individually in vials and were analyzed with the electronic nose unit consisting of 32 polymer sensors.The Cyranose-320 was able to differentiate between varieties of rice.The chemical composition of the rice odors for differentiating rice samples needs to be investigated.The optimum parameter settings should be considered during the Cyranose-320 training process especially for multiple samples,which are helpful for obtaining an accurate training model to improve identification capability.Further,it is necessary to investigate the E-nose sensor selection for obtaining better classification accuracy.A re- duced number of sensors could potentially shorten the data processing time,and could be used to establish an application pro- cedure and reduce the cost for a specific electronic nose.Further research is needed for developing analytical procedures that adapt the Cyranose-320 as a tool for testing rice quality.