Background:Pathological scars are a disorder that can lead to various cosmetic,psychological,and functional problems,and no effective assessment methods are currently available.Assessment and treatment of pathological...Background:Pathological scars are a disorder that can lead to various cosmetic,psychological,and functional problems,and no effective assessment methods are currently available.Assessment and treatment of pathological scars are based on cutaneous manifestations.A two-photon microscope(TPM)with the potential for real-time non-invasive assessment may help determine the under-surface pathophysiological conditions in vivo.This study used a portable handheld TPM to image epidermal cells and dermal collagen structures in pathological scars and normal skin in vivo to evaluate the effectiveness of treatment in scar patients.Methods:Fifteen patients with pathological scars and three healthy controls were recruited.Imaging was performed using a portable handheld TPM.Five indexes were extracted from two dimensional(2D)and three dimensional(3D)perspectives,including collagen depth,dermo-epidermal junction(DEJ)contour ratio,thickness,orientation,and occupation(proportion of collagen fibers in the field of view)of collagen.Two depth-dependent indexes were computed through the 3D second harmonic generation image and three morphology-related indexes from the 2D images.We assessed index differences between scar and normal skin and changes before and after treatment.Results:Pathological scars and normal skin differed markedly regarding the epidermal morphological structure and the spectral characteristics of collagen fibers.Five indexes were employed to distinguish between normal skin and scar tissue.Statistically significant differences were found in average depth(t=9.917,P<0.001),thickness(t=4.037,P<0.001),occupation(t=2.169,P<0.050),orientation of collagen(t=3.669,P<0.001),and the DEJ contour ratio(t=5.105,P<0.001).Conclusions:Use of portable handheld TPM can distinguish collagen from skin tissues;thus,it is more suitable for scar imaging than reflectance confocal microscopy.Thus,a TPM may be an auxiliary tool for scar treatment selection and assessing treatment efficacy.展开更多
Mesenchymal stromal cells(MSCs)hold great promise for tissue regeneration in debilitating disorders.Despite reported improvements,the short-term outcomes of MSC transplantation,which is possibly linked to poor cell su...Mesenchymal stromal cells(MSCs)hold great promise for tissue regeneration in debilitating disorders.Despite reported improvements,the short-term outcomes of MSC transplantation,which is possibly linked to poor cell survival,demand extensive investigation.Disease-associated stress microenvironments further complicate outcomes.This debate underscores the need for a deeper understanding of the phenotypes of transplanted MSCs and their environment-induced fluctuations.Additionally,questions arise about how to predict,track,and comprehend cell fate post-transplantation.In vivo cellular imaging has emerged as a critical requirement for both short-and long-term safety and efficacy studies.However,translating preclinical imaging methods to clinical settings remains challenging.The fate and function of transplanted cells within the host environment present intricate challenges,including MSC engraftment,variability,and inconsistencies between preclinical and clinical data.The study explored the impact of high glucose concentrations on MSC survival in diabetic environments,emphasizing mitochondrial factors.Preserving these factors may enhance MSC survival,suggesting potential strategies involving genetic modification,biomaterials,and nanoparticles.Understanding stressors in diabetic patients is crucial for predicting the effects of MSC-based therapies.These multifaceted challenges call for a holistic approach involving the incorporation of large-scale data,computational disease modeling,and possibly artificial intelligence to enable deterministic insights.展开更多
Full view observation throughout entire specimens over a prolonged period is crucial when exploring the physiological functions and system-level behaviors.Multi-photon microscopy(MPM)has been widely employed for such ...Full view observation throughout entire specimens over a prolonged period is crucial when exploring the physiological functions and system-level behaviors.Multi-photon microscopy(MPM)has been widely employed for such purposes owing to its deep penetration ability.However,the current MPM struggles with balancing the imaging depth and quality while avoiding photodamage for the exponential increasement of excitation power with the imaging depth.Here,we present a dual-objective two-photon microscope(Duo-2P),characterized by bidirectional two-photon excitation and fluorescence collection,for long-duration volumetric imaging of dense scattering samples.Duo-2P effectively doubles the imaging depth,reduces the total excitation energy by an order of magnitude for samples with a thickness five times the scattering length,and enhances the signal-to-noise ratio up to 1.4 times.Leveraging these advantages,we acquired volumetric images of a 380-μm suprachiasmatic nucleus slice for continuous 4-h recording at a rate of 1.67 s/volume,visualized the calcium activities over 4000 neurons,and uncovered their state-switching behavior.We conclude that Duo-2P provides an elegant and powerful means to overcome the fundamental depth limit while mitigating photodamages for deep tissue volumetric imaging.展开更多
To evaluate the measurement of zonulin level and antibodies of zonulin and other tight junction proteins in the blood of controls and celiac disease patients. METHODSThis study was conducted to assess the variability ...To evaluate the measurement of zonulin level and antibodies of zonulin and other tight junction proteins in the blood of controls and celiac disease patients. METHODSThis study was conducted to assess the variability or stability of zonulin levels vs IgA and IgG antibodies against zonulin in blood samples from 18 controls at 0, 6, 24 and 30 h after blood draw. We also measured zonulin level as well as zonulin, occludin, vinculin, aquaporin 4 and glial fibrillary acidic protein antibodies in the sera of 30 patients with celiac disease and 30 controls using enzyme-linked immunosorbent assay methodology. RESULTSThe serum zonulin level in 6 out of 18 subjects was low or < 2.8 ng/mL and was very close to the detection limit of the assay. The other 12 subjects had zonulin levels of > 2.8 ng/mL and showed significant fluctuation from sample to sample. Comparatively, zonulin antibody measured in all samples was highly stable and reproducible from sample to sample. Celiac disease patients showed zonulin levels with a mean of 8.5 ng/mL compared to 3.7 ng/mL in controls (P < 0.0001). Elevation of zonulin level at 2SD above the mean was demonstrated in 37% of celiac disease patients, while antibodies against zonulin, occludin and other tight junction proteins was detected in up to 86% of patients with celiac disease. CONCLUSIONDue to its fluctuation, a single measurement of zonulin level is not recommended for assessment of intestinal barrier integrity. Measurement of IgG and IgA antibodies against zonulin, occludin, and other tight junction proteins is proposed for the evaluation of the loss of intestinal barrier integrity.展开更多
基金supported by grants from Beijing Municipal Science and Technology Commission Medicine Collaborative Science and Technology Innovation Research Project(No.Z191100007719001)To Establish a Database and Study the Imaging Features of Common Skin Diseases based on Two-photon Imaging Technology(No.SK2021090379-1)
文摘Background:Pathological scars are a disorder that can lead to various cosmetic,psychological,and functional problems,and no effective assessment methods are currently available.Assessment and treatment of pathological scars are based on cutaneous manifestations.A two-photon microscope(TPM)with the potential for real-time non-invasive assessment may help determine the under-surface pathophysiological conditions in vivo.This study used a portable handheld TPM to image epidermal cells and dermal collagen structures in pathological scars and normal skin in vivo to evaluate the effectiveness of treatment in scar patients.Methods:Fifteen patients with pathological scars and three healthy controls were recruited.Imaging was performed using a portable handheld TPM.Five indexes were extracted from two dimensional(2D)and three dimensional(3D)perspectives,including collagen depth,dermo-epidermal junction(DEJ)contour ratio,thickness,orientation,and occupation(proportion of collagen fibers in the field of view)of collagen.Two depth-dependent indexes were computed through the 3D second harmonic generation image and three morphology-related indexes from the 2D images.We assessed index differences between scar and normal skin and changes before and after treatment.Results:Pathological scars and normal skin differed markedly regarding the epidermal morphological structure and the spectral characteristics of collagen fibers.Five indexes were employed to distinguish between normal skin and scar tissue.Statistically significant differences were found in average depth(t=9.917,P<0.001),thickness(t=4.037,P<0.001),occupation(t=2.169,P<0.050),orientation of collagen(t=3.669,P<0.001),and the DEJ contour ratio(t=5.105,P<0.001).Conclusions:Use of portable handheld TPM can distinguish collagen from skin tissues;thus,it is more suitable for scar imaging than reflectance confocal microscopy.Thus,a TPM may be an auxiliary tool for scar treatment selection and assessing treatment efficacy.
基金Supported by the Romanian Ministry of Research,Innovation and Digitization,CNCS/CCCDI-UEFISCDI,project number ERANETEURONANOMED-3-OASIs,within PNCDI III(contract number 273/2022).
文摘Mesenchymal stromal cells(MSCs)hold great promise for tissue regeneration in debilitating disorders.Despite reported improvements,the short-term outcomes of MSC transplantation,which is possibly linked to poor cell survival,demand extensive investigation.Disease-associated stress microenvironments further complicate outcomes.This debate underscores the need for a deeper understanding of the phenotypes of transplanted MSCs and their environment-induced fluctuations.Additionally,questions arise about how to predict,track,and comprehend cell fate post-transplantation.In vivo cellular imaging has emerged as a critical requirement for both short-and long-term safety and efficacy studies.However,translating preclinical imaging methods to clinical settings remains challenging.The fate and function of transplanted cells within the host environment present intricate challenges,including MSC engraftment,variability,and inconsistencies between preclinical and clinical data.The study explored the impact of high glucose concentrations on MSC survival in diabetic environments,emphasizing mitochondrial factors.Preserving these factors may enhance MSC survival,suggesting potential strategies involving genetic modification,biomaterials,and nanoparticles.Understanding stressors in diabetic patients is crucial for predicting the effects of MSC-based therapies.These multifaceted challenges call for a holistic approach involving the incorporation of large-scale data,computational disease modeling,and possibly artificial intelligence to enable deterministic insights.
基金National Natural Science Foundation of China(32293210,32327802)CAMS Innovation Fund for Medical Sciences(2019-I2M-5-054).
文摘Full view observation throughout entire specimens over a prolonged period is crucial when exploring the physiological functions and system-level behaviors.Multi-photon microscopy(MPM)has been widely employed for such purposes owing to its deep penetration ability.However,the current MPM struggles with balancing the imaging depth and quality while avoiding photodamage for the exponential increasement of excitation power with the imaging depth.Here,we present a dual-objective two-photon microscope(Duo-2P),characterized by bidirectional two-photon excitation and fluorescence collection,for long-duration volumetric imaging of dense scattering samples.Duo-2P effectively doubles the imaging depth,reduces the total excitation energy by an order of magnitude for samples with a thickness five times the scattering length,and enhances the signal-to-noise ratio up to 1.4 times.Leveraging these advantages,we acquired volumetric images of a 380-μm suprachiasmatic nucleus slice for continuous 4-h recording at a rate of 1.67 s/volume,visualized the calcium activities over 4000 neurons,and uncovered their state-switching behavior.We conclude that Duo-2P provides an elegant and powerful means to overcome the fundamental depth limit while mitigating photodamages for deep tissue volumetric imaging.
文摘To evaluate the measurement of zonulin level and antibodies of zonulin and other tight junction proteins in the blood of controls and celiac disease patients. METHODSThis study was conducted to assess the variability or stability of zonulin levels vs IgA and IgG antibodies against zonulin in blood samples from 18 controls at 0, 6, 24 and 30 h after blood draw. We also measured zonulin level as well as zonulin, occludin, vinculin, aquaporin 4 and glial fibrillary acidic protein antibodies in the sera of 30 patients with celiac disease and 30 controls using enzyme-linked immunosorbent assay methodology. RESULTSThe serum zonulin level in 6 out of 18 subjects was low or < 2.8 ng/mL and was very close to the detection limit of the assay. The other 12 subjects had zonulin levels of > 2.8 ng/mL and showed significant fluctuation from sample to sample. Comparatively, zonulin antibody measured in all samples was highly stable and reproducible from sample to sample. Celiac disease patients showed zonulin levels with a mean of 8.5 ng/mL compared to 3.7 ng/mL in controls (P < 0.0001). Elevation of zonulin level at 2SD above the mean was demonstrated in 37% of celiac disease patients, while antibodies against zonulin, occludin and other tight junction proteins was detected in up to 86% of patients with celiac disease. CONCLUSIONDue to its fluctuation, a single measurement of zonulin level is not recommended for assessment of intestinal barrier integrity. Measurement of IgG and IgA antibodies against zonulin, occludin, and other tight junction proteins is proposed for the evaluation of the loss of intestinal barrier integrity.