Sustainable development and continued prosperity of humanity hinge on the availability of renewable energy sources on a terawatts scale. In the long run, solar energy is the only source that can meet this daunting dem...Sustainable development and continued prosperity of humanity hinge on the availability of renewable energy sources on a terawatts scale. In the long run, solar energy is the only source that can meet this daunting demand. Widespread utilization of solar energy faces challenges as a result of its diffusive (hence low energy density) and intermittent nature. How to effectively harvest, concentrate, store and redistribute solar energy constitutes a fundamental challenge that the scientific community needs to address. Photoelectrochemical (PEC) water splitting is a process that can directly convert solar energy into chemical energy and store it in chemical bonds, by producing hydrogen as a clean fuel source. It has received significant research attention lately. Here we provide a concise review of the key issues encountered in carrying out PEC water splitting. Our focus is on the balance of considerations such as stability, earth abundance, and efficiency. Particular attention is paid to the combination of photoelectrodes with electrocatalysts, especially on the interfaces between different components.展开更多
An analysis of the girth weldability of Baosteel X80 UOE (U-ing-O-ing-Expanding) linepipes was conducted using manual shielded metal arc welding (SMAW) and semiautomatic self-shielded flux cored wire arc welding ...An analysis of the girth weldability of Baosteel X80 UOE (U-ing-O-ing-Expanding) linepipes was conducted using manual shielded metal arc welding (SMAW) and semiautomatic self-shielded flux cored wire arc welding (FCAW). A technical specification for the optimum quality of a girth welding joint was obtained through a large amount of testing. According to the requirements of America Petroleum Institute(API) standard 1104 and the standards of the 2nd West-East natural gas transmission pipeline project,the mechanical properties of a girth welding joint were estimated. In addition,the effect of the girth welding procedure specifications and the consumable' s suitability on the impact toughness of the girth welding joint was discussed.展开更多
High efficiency and flexible inverted organic solar cells have been fabricated using solution-processed silver nanowire/zinc oxide composite transparent electrodes. The transparent electrodes showed a low sheet resist...High efficiency and flexible inverted organic solar cells have been fabricated using solution-processed silver nanowire/zinc oxide composite transparent electrodes. The transparent electrodes showed a low sheet resistance of -13 ff).sq-1 and high transmittance of -93% as well as superior mechanical flexibility. Power conversion efficiencies of -7.57% and -7.21% were achieved for devices fabricated on glass and plastic substrate, respectively. Moreover, the flexible devices did not show any degradation in their performance even after being folded with a radius of-480 μm.展开更多
Precipitation, a natural feature of weather systems in the Earth, is vitally important for the environment of any region. Under global climate change condition, the characteristics of precipitation have changed as a c...Precipitation, a natural feature of weather systems in the Earth, is vitally important for the environment of any region. Under global climate change condition, the characteristics of precipitation have changed as a consequence of enhanced global hydrological cycle. The source region of the Yellow River(SRYR), locating within the Qinghai-Tibet Plateau, is sensitive to the global climate change due to its complex orography and fragile ecosystem. To understand the precipitation characteristics and its impacts on the environment in the region, we studied the characteristics of rainy days and precipitation amount of different precipitation classes, such as light(0–5 and 5–10 mm), moderate(10–15, 15–20 and 20–25 mm) and heavy(≥25 mm) rains by analyzing the precipitation data of typical meteorological stations in the SRYR during the period 1961–2014, as well as the trends of persistent rainfall events and drought events. Results showed that annual average precipitation in this area had a non-significant(P〉0.05) increasing trend, and 82.5% of the precipitation occurred from May to September. Rainy days of the 0–5 mm precipitation class significantly decreased, whereas the rainy days of 5–10, 10–15, and 20–25 mm precipitation classes increased and that of ≥25 mm precipitation class decreased insignificantly. The persistent rainfall events of 1-or 2-day and more than 2-day showed an increasing trend, with the 1-or 2-day events being more frequent. Meanwhile, the number of short drought periods(≤10 days) increased while long drought periods(〉10 days) decreased. Since the 0–5 mm precipitation class had a huge impact on the grasslands productivity; the 5–10, 10–15, and 20–25 mm precipitation classes had positive effects on vegetation which rely on the deep soil water through moving nutrients and water into the root zone of these vegetation or through the plant-microbe interactions; the ≥25 mm precipitation class contributed to the floods; and more persistent展开更多
Aerosol ammonium(NH_(4)^(+)),mainly produced from the reactions of ammonia(NH_(3))with acids in the atmosphere,has significant impacts on air pollution,radiative forcing,and human health.Understanding the source and f...Aerosol ammonium(NH_(4)^(+)),mainly produced from the reactions of ammonia(NH_(3))with acids in the atmosphere,has significant impacts on air pollution,radiative forcing,and human health.Understanding the source and formation mechanism of NH_(4)^(+)can provide scientific insights into air quality improvements.However,the sources of NH_(3)in urban areas are not well understood,and few studies focus on NH_(3)/NH_(4)^(+)at different heights within the atmospheric boundary layer,which hinders a comprehensive understanding of aerosol NH_(4)^(+).In this study,we perform both field observation and modeling studies(the Community Multiscale Air Quality,CMAQ)to investigate regional NH_(3)emission sources and vertically resolved NH_(4)^(+)formation mechanisms during the winter in Beijing.Both stable nitrogen isotope analyses and CMAQ model suggest that combustion-related NH_(3)emissions,including fossil fuel sources,NH_(3)slip,and biomass burning,are important sources of aerosol NH_(4)^(+)with more than 60%contribution occurring on heavily polluted days.In contrast,volatilization-related NH_(3)sources(livestock breeding,N-fertilizer application,and human waste)are dominant on clean days.Combustion-related NH_(3)is mostly local from Beijing,and biomass burning is likely an important NH_(3)source(~15%–20%)that was previously overlooked.More effective control strategies such as the two-product(e.g.,reducing both SO_(2)and NH_(3))control policy should be considered to improve air quality.展开更多
Rock salt has excellent properties for its use as underground leak‐proof containers for the storage of renewable energy.Salt solution mining has long been used for salt mining,and can now be employed in the construct...Rock salt has excellent properties for its use as underground leak‐proof containers for the storage of renewable energy.Salt solution mining has long been used for salt mining,and can now be employed in the construction of underground salt caverns for the storage of hydrogen gas.This paper presents a wide range of methods to study the mineralogy,geochemistry,microstructure and geomechanical characteristics of rock salt,which are important in the engineering of safe underground storage rock salt caverns.The mineralogical composition of rock salt varies and is linked to its depositional environment and diagenetic alterations.The microstructure in rock salt is related to cataclastic deformation,diffusive mass transfer and intracrystalline plastic deformation,which can then be associated with the macrostructural geomechanical behavior.Compared to other types of rock,rock salt exhibits creep at lower temperatures.This behavior can be divided into three phases based on the changes in strain with time.However,at very low effective confining pressure and high deviatoric stress,rock salt can exhibit dilatant behavior,where brittle deformation could compromise the safety of underground gas storage in rock salt caverns.The proposed review presents the impact of purity,geochemistry and water content of rock salt on its geomechanical behavior,and thus,on the safety of the caverns.展开更多
Future climate change will affect the environmental fate of hydrophobic organic contaminants(HOCs)and associated human health risks,yet the extent of these effects remains unknown.Here,we couple a high-resolution envi...Future climate change will affect the environmental fate of hydrophobic organic contaminants(HOCs)and associated human health risks,yet the extent of these effects remains unknown.Here,we couple a high-resolution environmental multimedia model with a bioaccumulation model to study the multimedia distribution of 16 priority polycyclic aromatic hydrocarbons(PAHs),a group of HOCs,and assess future PAH-related human health risks under varying climate change scenarios over China at a continental scale.After removing the effects of PAH emission changes,we find that the total PAH concentrations would decrease in the air,freshwater,sediment,soil,and organisms,while the high-molecular-weight PAH would increase in the air with climate warming from 1.5°C to 4°C.Consequently,the multi-pathway exposure human health risks predominately influenced by dietary ingestion are expected to decrease by 1.7%–20.5%,while the respiratory risks are projected to rise by 0.2%–5.8%in the future.However,the persistently high multi-pathway human health risks underscore the need for reducing future PAH emissions by 69%compared with 2009 levels in China.Our study demonstrates the urgency of limiting PAH emissions under future climate change for public health and highlights the importance of including the contribution of dietary ingestion in human health risk assessment.展开更多
Grooving corrosion is a major form of corrosion and is prone to occur when high-frequency electric resistance welded (HFW) pipes are being used. Therefore,grooving corrosion is one of the performance indexes of HFW ...Grooving corrosion is a major form of corrosion and is prone to occur when high-frequency electric resistance welded (HFW) pipes are being used. Therefore,grooving corrosion is one of the performance indexes of HFW products. Grooving corrosion usually occurs along the welding fusion line, resulting in one or more corrosion grooves. The main factors affecting grooving corrosion include the contents of alloying elements and impurities (especially sulphur) in the steel,the microstructure of the welds and the steel substrate, welding parameters and the service environment as well. In this study, the existing methods for assessing grooving corrosion were systematically reviewed, improvements and new methods were proposed and developed to overcome the shortcomings of the existing methods, such as inaccuracy and excessive research time. By comparison with the existing methods, the operational procedures and the characteristics of the new methods are introduced, and issues regarding the behavior of grooving corrosion and their assessment methods, which both need further research,are discussed in this study.展开更多
Eco-friendly printing is important for mass manufacturing of thin-film photovoltaic(PV)devices to preserve human safety and the environment and to reduce energy consumption and capital expense.However,it is challengin...Eco-friendly printing is important for mass manufacturing of thin-film photovoltaic(PV)devices to preserve human safety and the environment and to reduce energy consumption and capital expense.However,it is challenging for perovskite PVs due to the lack of eco-friendly solvents for ambient fast printing.In this study,we demonstrate for the first time an eco-friendly printing concept for high-performance perovskite solar cells.Both the perovskite and charge transport layers were fabricated from eco-friendly solvents via scalable fast blade coating under ambient conditions.The perovskite dynamic crystallization during blade coating investigated using in situ grazing incidence wide-angle X-ray scattering(GIWAXS)reveals a long sol-gel window prior to phase transformation and a strong interaction between the precursors and the eco-friendly solvents.The insights enable the achievement of high quality coatings for both the perovskite and charge transport layers by controlling film formation during scalable coating.The excellent optoelectronic properties of these coatings translate to a power conversion efficiency of 18.26%for eco-friendly printed solar cells,which is on par with the conventional devices fabricated via spin coating from toxic solvents under inert atmosphere.The eco-friendly printing paradigm presented in this work paves the way for future green and highthroughput fabrication on an industrial scale for perovskite PVs.展开更多
As one of the most important families of porous materials,metal–organic frameworks(MOFs)have well-defined atomic structures.This provides ideal models for investigating and understanding the relationships between str...As one of the most important families of porous materials,metal–organic frameworks(MOFs)have well-defined atomic structures.This provides ideal models for investigating and understanding the relationships between structures and catalytic activities at the molecular level.However,the active sites on the edges of two-dimensional(2D)MOFs have rarely been studied,as they are less exposed to the surfaces.Here,for the first time,we synthesized and observed that the 2D layers could align perpendicular to the surface of a 2D zeolitic imidazolate framework L(ZIF-L)with a leaf-like morphology.Owing to this unique orientation,the active sites on the edges of the 2D crystal structure could mostly be exposed to the surfaces.Interestingly,when another layer of ZIF-L-Co was grown heteroepitaxially onto ZIF-L-Zn(ZIF-L-Zn@ZIF-L-Co),the two layers shared a common b axis but rotated by 90°in the ac plane.This demonstrated that we could control exposed facets of the 2D MOFs.The ZIF-L-Co with more exposed edge active sites exhibited high electrocatalytic activity for oxygen reduction reaction.This work provides a new concept of designing unique oriented layers in 2D MOFs to expose more edge-active sites for efficient electrocatalysis.展开更多
Coarsening, embrittlement and corrosion sensitization in a high temperature heat-affected zone (HTHAZ) are the major problems when 12% chromium low carbon stainless steel is being welded, which induce the deteriorat...Coarsening, embrittlement and corrosion sensitization in a high temperature heat-affected zone (HTHAZ) are the major problems when 12% chromium low carbon stainless steel is being welded, which induce the deterioration of the impact toughness at a low temperature and intergranular corrosion resistance property. This study investigates the corresponding microstructures in HTHAZ with different chemical compositions and heat inputs through thermal simulation tests. The results show that the martensite content increases with the descending of ferrite factor (FF) when FF is below 9.0 and heat input influences the microstructure of high FF steel in HTHAZ. Martensite of 12% Cr stainless steel in HTHAZ with only Nb stabilization reticularly distributes at ferrite grain boundaries.展开更多
We focused on developing penetration-type semitransparent thin-film solar cells(STSCs) using hydrogenated amorphous Si(a-Si:H) for a building-integrated photovoltaic(BIPV) window system. Instead of conventional p-type...We focused on developing penetration-type semitransparent thin-film solar cells(STSCs) using hydrogenated amorphous Si(a-Si:H) for a building-integrated photovoltaic(BIPV) window system. Instead of conventional p-type a-Si:H, p-type hydrogenated microcrystalline Si oxide(p-μc-SiOx:H) was introduced for a wide-bandgap and conductive window layer. For these purposes, we tuned the CO2/SiH4 flow ratio(R) during p-μc-SiOx:H deposition. The film crystallinity decreased from 50% to 13% as R increased from 0.2 to 1.2. At the optimized R of 0.6, the quantum efficiency was improved under short wavelengths by the suppression of p-type layer parasitic absorption. The series resistance was well controlled to avoid fill factor loss at R = 0.6. Furthermore, we introduced dual buffers comprising p-a-SiOx:H/i-a-Si:H at the p/i interface to alleviate interfacial energy-band mismatch. The a-Si:H STSCs with the suggested window and dual buffers showed improvements in transmittance and efficiency from 22.9% to 29.3% and from 4.62% to 6.41%, respectively, compared to the STSC using a pristine p-a-Si:H window.展开更多
Zn-Mg alloy coatings were obtained by physical vapor deposition (PVD) on electroplated steel sheets. Study on the formation of intermetallic phases in the coatings was conducted through the use of X-ray diffraction ...Zn-Mg alloy coatings were obtained by physical vapor deposition (PVD) on electroplated steel sheets. Study on the formation of intermetallic phases in the coatings was conducted through the use of X-ray diffraction (XRD) ,scanning electron microscope (SEM) and glow discharge optical emission spectrometry (GDOES). It is found that MgZn2 is the main Zn-Mg alloy phase formed after heat treatment. The formation of Mg-Zn intermetallic phases is controlled not only by thermodynamics, but also by kinetics. MgZn2 has different morphologies, such as laminar structure,porous structure and floc-like structure,which are mainly determined by the annealing temperature. Obvious diffusion of Mg starts at 350 ℃, and the diffusion of iron increases significantly when the temperature is elevated to 380℃.展开更多
Ni-Cu nano-coatings were prepared by pulsed electroplating technique in the baths containing various amount of boric acid. Their microstructure, morphologies and corrosion resistance were characterized in detail. The ...Ni-Cu nano-coatings were prepared by pulsed electroplating technique in the baths containing various amount of boric acid. Their microstructure, morphologies and corrosion resistance were characterized in detail. The addition of boric acid strongly influences on the microstructure of the Ni-Cu coatings.The coating with a grain size of 130 nm, obtained from the bath containing 35 g L^-1 boric acid, shows the highest corrosion resistance. This is attributed to the low-valence Cu ion(Cu^+) additions in nickel oxide, which could significantly decrease the oxygen ion vacancy density in the passive film to form a more compact passive film. The higher Cu^+ additions and the lower diffusivity of point defects(D0) are responsible for the formation of more compact passive film on the coating obtained from the bath with 35 g L^-1 boric acid.展开更多
As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufact...As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufacturing, transportation and/or storage of the plates. General corrosion often takes place on the surface of a plate in the exterior part of a package, and only reduces the thickness of the plate and slightly increases the roughness of the surface; however, localized corrosion on the surface of a plate inside the package is likely to result in the formation of pit-like defects on the substrate of the plate, which cannot be removed thoroughly by normal acid pickling or sand blasting, and affects the application of the plate. This research report analyzes the phenomena and characteristics of the rusting behavior of hot- rolled steel plates for automobile applications, and the influencing factors are summaried. The corresponding preventative measures are proposed.展开更多
Oxygen reduction reaction (ORR) is an important process for the conversion and utilization of a wide range of renewable energy sources, and is critical for the shape of future energy scenario [1–10]. However, ORR is ...Oxygen reduction reaction (ORR) is an important process for the conversion and utilization of a wide range of renewable energy sources, and is critical for the shape of future energy scenario [1–10]. However, ORR is a complex four-electron transfer process and is kinetically sluggish. It is urgent to develop high-efficient electrocatalysts to solve this problem [11–15]. Up to now, precious metal-based catalysts such as Pt-based electrocatalysts have been widely studied and found to be one of the most efficient electrocatalysts for ORR. However, the high price and the small reserves limit their large-scale commercialization [10,16–23]. Therefore, in order to fulfill needs for the practical applications, it is necessary to develop low-cost electrocatalysts, also with high activity and great stability [19,24–28].展开更多
The transformation of mercury(Hg) in the environment plays a vital role in the cycling of Hg and its risk to the ecosystem and human health. Of particular importance are Hg oxidation/reduction and methylation/demethyl...The transformation of mercury(Hg) in the environment plays a vital role in the cycling of Hg and its risk to the ecosystem and human health. Of particular importance are Hg oxidation/reduction and methylation/demethylation processes driven or mediated by the dynamics of light, microorganisms, and organic carbon, among others. Advances in understanding those Hg transformation processes determine our capacity of projecting and mitigating Hg risk. Here, we provide a critical analysis of major knowledge gaps in our understanding of Hg transformation in nature, with perspectives on approaches moving forward. Our analysis focuses on Hg transformation processes in the environment, as well as emerging methodology in exploring these processes. Future avenues for improving the understanding of Hg transformation processes to protect ecosystem and human health are also explored.展开更多
A cerium film was prepared on the surface of rebar by chemical conversion method to enhance its corrosion resistance.The film in the simulated concrete pore solution was measured by electrochemical method,transmission...A cerium film was prepared on the surface of rebar by chemical conversion method to enhance its corrosion resistance.The film in the simulated concrete pore solution was measured by electrochemical method,transmission electron microscope(TEM)and X-ray photoelectron spectroscopy(XPS).The effect of temperature on film formation was studied,and the optimum temperature was determined at 35℃.The film produced by too high formation temperature has more defects,resulting in the lower corrosion resistance.The Ce film resistance increased with time evolution until 800 h,then decreased and stabilized.The Ce film layer has a double-layer film structure,the upper layer is an oxide of cerium,and the underlayer is an oxide of iron.Results revealed that after being immersed in the simulated concrete pore solution,the corrosion resistance of the Ce film was enhanced by self-densification.展开更多
文摘Sustainable development and continued prosperity of humanity hinge on the availability of renewable energy sources on a terawatts scale. In the long run, solar energy is the only source that can meet this daunting demand. Widespread utilization of solar energy faces challenges as a result of its diffusive (hence low energy density) and intermittent nature. How to effectively harvest, concentrate, store and redistribute solar energy constitutes a fundamental challenge that the scientific community needs to address. Photoelectrochemical (PEC) water splitting is a process that can directly convert solar energy into chemical energy and store it in chemical bonds, by producing hydrogen as a clean fuel source. It has received significant research attention lately. Here we provide a concise review of the key issues encountered in carrying out PEC water splitting. Our focus is on the balance of considerations such as stability, earth abundance, and efficiency. Particular attention is paid to the combination of photoelectrodes with electrocatalysts, especially on the interfaces between different components.
文摘An analysis of the girth weldability of Baosteel X80 UOE (U-ing-O-ing-Expanding) linepipes was conducted using manual shielded metal arc welding (SMAW) and semiautomatic self-shielded flux cored wire arc welding (FCAW). A technical specification for the optimum quality of a girth welding joint was obtained through a large amount of testing. According to the requirements of America Petroleum Institute(API) standard 1104 and the standards of the 2nd West-East natural gas transmission pipeline project,the mechanical properties of a girth welding joint were estimated. In addition,the effect of the girth welding procedure specifications and the consumable' s suitability on the impact toughness of the girth welding joint was discussed.
文摘High efficiency and flexible inverted organic solar cells have been fabricated using solution-processed silver nanowire/zinc oxide composite transparent electrodes. The transparent electrodes showed a low sheet resistance of -13 ff).sq-1 and high transmittance of -93% as well as superior mechanical flexibility. Power conversion efficiencies of -7.57% and -7.21% were achieved for devices fabricated on glass and plastic substrate, respectively. Moreover, the flexible devices did not show any degradation in their performance even after being folded with a radius of-480 μm.
基金supported by the National Natural Science Foundation of China (41530529,41375022,41575013)the Key Research Program of the Chinese Academy of Sciences (KZZD-EW-13)
文摘Precipitation, a natural feature of weather systems in the Earth, is vitally important for the environment of any region. Under global climate change condition, the characteristics of precipitation have changed as a consequence of enhanced global hydrological cycle. The source region of the Yellow River(SRYR), locating within the Qinghai-Tibet Plateau, is sensitive to the global climate change due to its complex orography and fragile ecosystem. To understand the precipitation characteristics and its impacts on the environment in the region, we studied the characteristics of rainy days and precipitation amount of different precipitation classes, such as light(0–5 and 5–10 mm), moderate(10–15, 15–20 and 20–25 mm) and heavy(≥25 mm) rains by analyzing the precipitation data of typical meteorological stations in the SRYR during the period 1961–2014, as well as the trends of persistent rainfall events and drought events. Results showed that annual average precipitation in this area had a non-significant(P〉0.05) increasing trend, and 82.5% of the precipitation occurred from May to September. Rainy days of the 0–5 mm precipitation class significantly decreased, whereas the rainy days of 5–10, 10–15, and 20–25 mm precipitation classes increased and that of ≥25 mm precipitation class decreased insignificantly. The persistent rainfall events of 1-or 2-day and more than 2-day showed an increasing trend, with the 1-or 2-day events being more frequent. Meanwhile, the number of short drought periods(≤10 days) increased while long drought periods(〉10 days) decreased. Since the 0–5 mm precipitation class had a huge impact on the grasslands productivity; the 5–10, 10–15, and 20–25 mm precipitation classes had positive effects on vegetation which rely on the deep soil water through moving nutrients and water into the root zone of these vegetation or through the plant-microbe interactions; the ≥25 mm precipitation class contributed to the floods; and more persistent
基金supported by the National Natural Science Foundation of China(42130513,41905110,and 41961130384)the Royal Society Newton Advanced Fellowship,United Kingdom(NAFR1191220)the Research Grants Council of the Hong Kong Special Administrative Region,China(T24/504/17 and A-Poly U502/16)。
文摘Aerosol ammonium(NH_(4)^(+)),mainly produced from the reactions of ammonia(NH_(3))with acids in the atmosphere,has significant impacts on air pollution,radiative forcing,and human health.Understanding the source and formation mechanism of NH_(4)^(+)can provide scientific insights into air quality improvements.However,the sources of NH_(3)in urban areas are not well understood,and few studies focus on NH_(3)/NH_(4)^(+)at different heights within the atmospheric boundary layer,which hinders a comprehensive understanding of aerosol NH_(4)^(+).In this study,we perform both field observation and modeling studies(the Community Multiscale Air Quality,CMAQ)to investigate regional NH_(3)emission sources and vertically resolved NH_(4)^(+)formation mechanisms during the winter in Beijing.Both stable nitrogen isotope analyses and CMAQ model suggest that combustion-related NH_(3)emissions,including fossil fuel sources,NH_(3)slip,and biomass burning,are important sources of aerosol NH_(4)^(+)with more than 60%contribution occurring on heavily polluted days.In contrast,volatilization-related NH_(3)sources(livestock breeding,N-fertilizer application,and human waste)are dominant on clean days.Combustion-related NH_(3)is mostly local from Beijing,and biomass burning is likely an important NH_(3)source(~15%–20%)that was previously overlooked.More effective control strategies such as the two-product(e.g.,reducing both SO_(2)and NH_(3))control policy should be considered to improve air quality.
文摘Rock salt has excellent properties for its use as underground leak‐proof containers for the storage of renewable energy.Salt solution mining has long been used for salt mining,and can now be employed in the construction of underground salt caverns for the storage of hydrogen gas.This paper presents a wide range of methods to study the mineralogy,geochemistry,microstructure and geomechanical characteristics of rock salt,which are important in the engineering of safe underground storage rock salt caverns.The mineralogical composition of rock salt varies and is linked to its depositional environment and diagenetic alterations.The microstructure in rock salt is related to cataclastic deformation,diffusive mass transfer and intracrystalline plastic deformation,which can then be associated with the macrostructural geomechanical behavior.Compared to other types of rock,rock salt exhibits creep at lower temperatures.This behavior can be divided into three phases based on the changes in strain with time.However,at very low effective confining pressure and high deviatoric stress,rock salt can exhibit dilatant behavior,where brittle deformation could compromise the safety of underground gas storage in rock salt caverns.The proposed review presents the impact of purity,geochemistry and water content of rock salt on its geomechanical behavior,and thus,on the safety of the caverns.
基金supported by the National Natural Science Foundation of China (51933010 and 61974085)the 111 Project (B21005), the National University Research Fund (GK202201005)the National 1000-talent-plan Program (1110010341)。
基金supported by the National Key Research and Development Program of China(2017YFA0605001)the National Natural Science Foundation of China(52039001,92047303 and 41977359)
文摘Future climate change will affect the environmental fate of hydrophobic organic contaminants(HOCs)and associated human health risks,yet the extent of these effects remains unknown.Here,we couple a high-resolution environmental multimedia model with a bioaccumulation model to study the multimedia distribution of 16 priority polycyclic aromatic hydrocarbons(PAHs),a group of HOCs,and assess future PAH-related human health risks under varying climate change scenarios over China at a continental scale.After removing the effects of PAH emission changes,we find that the total PAH concentrations would decrease in the air,freshwater,sediment,soil,and organisms,while the high-molecular-weight PAH would increase in the air with climate warming from 1.5°C to 4°C.Consequently,the multi-pathway exposure human health risks predominately influenced by dietary ingestion are expected to decrease by 1.7%–20.5%,while the respiratory risks are projected to rise by 0.2%–5.8%in the future.However,the persistently high multi-pathway human health risks underscore the need for reducing future PAH emissions by 69%compared with 2009 levels in China.Our study demonstrates the urgency of limiting PAH emissions under future climate change for public health and highlights the importance of including the contribution of dietary ingestion in human health risk assessment.
文摘Grooving corrosion is a major form of corrosion and is prone to occur when high-frequency electric resistance welded (HFW) pipes are being used. Therefore,grooving corrosion is one of the performance indexes of HFW products. Grooving corrosion usually occurs along the welding fusion line, resulting in one or more corrosion grooves. The main factors affecting grooving corrosion include the contents of alloying elements and impurities (especially sulphur) in the steel,the microstructure of the welds and the steel substrate, welding parameters and the service environment as well. In this study, the existing methods for assessing grooving corrosion were systematically reviewed, improvements and new methods were proposed and developed to overcome the shortcomings of the existing methods, such as inaccuracy and excessive research time. By comparison with the existing methods, the operational procedures and the characteristics of the new methods are introduced, and issues regarding the behavior of grooving corrosion and their assessment methods, which both need further research,are discussed in this study.
基金supported by the National Key Research and Development Program of China(2016YFA0202403,2017YFA0204800)the Key Program Project of the National Natural Science Foundation of China(51933010)+4 种基金the National Natural Science Foundation of China(61974085)the National University Research Fund(GK201802005)the 111 Project(B14041)the National 1000-Talent-Plan Program(1110010341)CHESS is supported by the NSF Award DMR-1332208.
文摘Eco-friendly printing is important for mass manufacturing of thin-film photovoltaic(PV)devices to preserve human safety and the environment and to reduce energy consumption and capital expense.However,it is challenging for perovskite PVs due to the lack of eco-friendly solvents for ambient fast printing.In this study,we demonstrate for the first time an eco-friendly printing concept for high-performance perovskite solar cells.Both the perovskite and charge transport layers were fabricated from eco-friendly solvents via scalable fast blade coating under ambient conditions.The perovskite dynamic crystallization during blade coating investigated using in situ grazing incidence wide-angle X-ray scattering(GIWAXS)reveals a long sol-gel window prior to phase transformation and a strong interaction between the precursors and the eco-friendly solvents.The insights enable the achievement of high quality coatings for both the perovskite and charge transport layers by controlling film formation during scalable coating.The excellent optoelectronic properties of these coatings translate to a power conversion efficiency of 18.26%for eco-friendly printed solar cells,which is on par with the conventional devices fabricated via spin coating from toxic solvents under inert atmosphere.The eco-friendly printing paradigm presented in this work paves the way for future green and highthroughput fabrication on an industrial scale for perovskite PVs.
基金the support from the National Natural Science Foundation of China(grant nos.21975148,21875149,21835002,21875140,and 21773146)the Fundamental Research Funds for the Central Universities+3 种基金the Research Funds of Shaanxi Normal University,Shanghai Natural Science Fund(no.17ZR1418600)ChEM,SPST of ShanghaiTech University(no.EM02161943)the Swedish Research Council Formas(no.2020-00831,Z.H.)the University of Calgary’s Canada First Research Excellence Fund Program,the Global Research Initiative in Sustainable Low Carbon Unconventional Resources.
文摘As one of the most important families of porous materials,metal–organic frameworks(MOFs)have well-defined atomic structures.This provides ideal models for investigating and understanding the relationships between structures and catalytic activities at the molecular level.However,the active sites on the edges of two-dimensional(2D)MOFs have rarely been studied,as they are less exposed to the surfaces.Here,for the first time,we synthesized and observed that the 2D layers could align perpendicular to the surface of a 2D zeolitic imidazolate framework L(ZIF-L)with a leaf-like morphology.Owing to this unique orientation,the active sites on the edges of the 2D crystal structure could mostly be exposed to the surfaces.Interestingly,when another layer of ZIF-L-Co was grown heteroepitaxially onto ZIF-L-Zn(ZIF-L-Zn@ZIF-L-Co),the two layers shared a common b axis but rotated by 90°in the ac plane.This demonstrated that we could control exposed facets of the 2D MOFs.The ZIF-L-Co with more exposed edge active sites exhibited high electrocatalytic activity for oxygen reduction reaction.This work provides a new concept of designing unique oriented layers in 2D MOFs to expose more edge-active sites for efficient electrocatalysis.
文摘Coarsening, embrittlement and corrosion sensitization in a high temperature heat-affected zone (HTHAZ) are the major problems when 12% chromium low carbon stainless steel is being welded, which induce the deterioration of the impact toughness at a low temperature and intergranular corrosion resistance property. This study investigates the corresponding microstructures in HTHAZ with different chemical compositions and heat inputs through thermal simulation tests. The results show that the martensite content increases with the descending of ferrite factor (FF) when FF is below 9.0 and heat input influences the microstructure of high FF steel in HTHAZ. Martensite of 12% Cr stainless steel in HTHAZ with only Nb stabilization reticularly distributes at ferrite grain boundaries.
基金supported by the Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) under grant Nos. 20163010012560 and 20172010104940
文摘We focused on developing penetration-type semitransparent thin-film solar cells(STSCs) using hydrogenated amorphous Si(a-Si:H) for a building-integrated photovoltaic(BIPV) window system. Instead of conventional p-type a-Si:H, p-type hydrogenated microcrystalline Si oxide(p-μc-SiOx:H) was introduced for a wide-bandgap and conductive window layer. For these purposes, we tuned the CO2/SiH4 flow ratio(R) during p-μc-SiOx:H deposition. The film crystallinity decreased from 50% to 13% as R increased from 0.2 to 1.2. At the optimized R of 0.6, the quantum efficiency was improved under short wavelengths by the suppression of p-type layer parasitic absorption. The series resistance was well controlled to avoid fill factor loss at R = 0.6. Furthermore, we introduced dual buffers comprising p-a-SiOx:H/i-a-Si:H at the p/i interface to alleviate interfacial energy-band mismatch. The a-Si:H STSCs with the suggested window and dual buffers showed improvements in transmittance and efficiency from 22.9% to 29.3% and from 4.62% to 6.41%, respectively, compared to the STSC using a pristine p-a-Si:H window.
文摘Zn-Mg alloy coatings were obtained by physical vapor deposition (PVD) on electroplated steel sheets. Study on the formation of intermetallic phases in the coatings was conducted through the use of X-ray diffraction (XRD) ,scanning electron microscope (SEM) and glow discharge optical emission spectrometry (GDOES). It is found that MgZn2 is the main Zn-Mg alloy phase formed after heat treatment. The formation of Mg-Zn intermetallic phases is controlled not only by thermodynamics, but also by kinetics. MgZn2 has different morphologies, such as laminar structure,porous structure and floc-like structure,which are mainly determined by the annealing temperature. Obvious diffusion of Mg starts at 350 ℃, and the diffusion of iron increases significantly when the temperature is elevated to 380℃.
基金financially supported by the National Natural Science Foundation of China (Nos. 51771061 and 51571067)National Basic Research Program of China (No. 2014CB643301)+4 种基金National Natural Science Foundation of Heilongjiang Province, China (No. E2016022)the Fundamental Research Founds for the Central Universities (No. HEUCFG201838)the Ministry of Science and Technology of China (No. 2012FY113000)Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Educationthe Chinese Scholarship Council in conjunction with Harbin Engineering University & the Viet Nam Maritime University
文摘Ni-Cu nano-coatings were prepared by pulsed electroplating technique in the baths containing various amount of boric acid. Their microstructure, morphologies and corrosion resistance were characterized in detail. The addition of boric acid strongly influences on the microstructure of the Ni-Cu coatings.The coating with a grain size of 130 nm, obtained from the bath containing 35 g L^-1 boric acid, shows the highest corrosion resistance. This is attributed to the low-valence Cu ion(Cu^+) additions in nickel oxide, which could significantly decrease the oxygen ion vacancy density in the passive film to form a more compact passive film. The higher Cu^+ additions and the lower diffusivity of point defects(D0) are responsible for the formation of more compact passive film on the coating obtained from the bath with 35 g L^-1 boric acid.
文摘As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufacturing, transportation and/or storage of the plates. General corrosion often takes place on the surface of a plate in the exterior part of a package, and only reduces the thickness of the plate and slightly increases the roughness of the surface; however, localized corrosion on the surface of a plate inside the package is likely to result in the formation of pit-like defects on the substrate of the plate, which cannot be removed thoroughly by normal acid pickling or sand blasting, and affects the application of the plate. This research report analyzes the phenomena and characteristics of the rusting behavior of hot- rolled steel plates for automobile applications, and the influencing factors are summaried. The corresponding preventative measures are proposed.
基金supported by the National Natural Science Foundation of China(Grant No.21975148,21601118,21773146,21902099,and 21905167)the Fundamental Research Funds for the Central Universities(GK201903033 and GK202003025)+5 种基金the “Thousand Talents Program”of Chinathe Fok Ying-Tong Education Foundation for Outstanding Young Teachers in Universitythe China Postdoctoral Science Foundation(2019M650254,and 2020T130391)the Opening Fund of State Key Laboratory of Heavy Oil Processing(SKLOP202002005)the Research Fund Program of Key Laboratory of Fuel Cell Technology of Guangdong Provincethe Research Funds of Shaanxi Normal University。
文摘Oxygen reduction reaction (ORR) is an important process for the conversion and utilization of a wide range of renewable energy sources, and is critical for the shape of future energy scenario [1–10]. However, ORR is a complex four-electron transfer process and is kinetically sluggish. It is urgent to develop high-efficient electrocatalysts to solve this problem [11–15]. Up to now, precious metal-based catalysts such as Pt-based electrocatalysts have been widely studied and found to be one of the most efficient electrocatalysts for ORR. However, the high price and the small reserves limit their large-scale commercialization [10,16–23]. Therefore, in order to fulfill needs for the practical applications, it is necessary to develop low-cost electrocatalysts, also with high activity and great stability [19,24–28].
基金supported by the National Natural Science Foundation of China (Nos. U2032201 and 21976193 )the Canada Research Chairs Program。
文摘The transformation of mercury(Hg) in the environment plays a vital role in the cycling of Hg and its risk to the ecosystem and human health. Of particular importance are Hg oxidation/reduction and methylation/demethylation processes driven or mediated by the dynamics of light, microorganisms, and organic carbon, among others. Advances in understanding those Hg transformation processes determine our capacity of projecting and mitigating Hg risk. Here, we provide a critical analysis of major knowledge gaps in our understanding of Hg transformation in nature, with perspectives on approaches moving forward. Our analysis focuses on Hg transformation processes in the environment, as well as emerging methodology in exploring these processes. Future avenues for improving the understanding of Hg transformation processes to protect ecosystem and human health are also explored.
基金financially supported by the National Natural Science Foundation of China(Nos.51771061 and 51571067)the National Basic Research Program of China(No.2014CB643301)+2 种基金the Natural Science Foundation of Heilongjiang Province,China(No.E2016022)the Fundamental Research Founds for the Central Universities(No.HEUCFG201838)the Key Laboratory of Superlight Materials and Surface Technology(Harbin Engineering University)。
文摘A cerium film was prepared on the surface of rebar by chemical conversion method to enhance its corrosion resistance.The film in the simulated concrete pore solution was measured by electrochemical method,transmission electron microscope(TEM)and X-ray photoelectron spectroscopy(XPS).The effect of temperature on film formation was studied,and the optimum temperature was determined at 35℃.The film produced by too high formation temperature has more defects,resulting in the lower corrosion resistance.The Ce film resistance increased with time evolution until 800 h,then decreased and stabilized.The Ce film layer has a double-layer film structure,the upper layer is an oxide of cerium,and the underlayer is an oxide of iron.Results revealed that after being immersed in the simulated concrete pore solution,the corrosion resistance of the Ce film was enhanced by self-densification.