The granulitic xenoliths discovered in the late Cretaceous basaltic rocks from Tuoyun basin, western Xinjiang Province contain the assemblage of Opx + Cpx + Pl ± Grt ± Qtz ± Kfs. Mineral chemistry, petr...The granulitic xenoliths discovered in the late Cretaceous basaltic rocks from Tuoyun basin, western Xinjiang Province contain the assemblage of Opx + Cpx + Pl ± Grt ± Qtz ± Kfs. Mineral chemistry, petrochemistry and zircon U-Pb ages from the xenoliths have been reported in the paper. Petrogenesis, the lower crustal nature and the mantle-crust interaction reflected by the granulites are discussed as well. Tuoyun granulites are mainly mafic with few intermediate components, and represent the magmatic products underwent granulite-facies metamorphism in lower crustal condition. Equilibrium temperature and the maximum pressure estimates of the granulites are 910 ± 35℃ and 13.5 × 108 Pa respectively, indicating that the crust beneath southwestern Tianshan had the thickness of less than 44 km and high geotherm (e.g. > 80 mW/m2) when the host magma erupted. During their formation, the fractional crystallization of olivine, pyroxene, plagioclase and ilmenite, plagioclase accumulation and the contamination of felsic components or fluid metasomatism processes had happened. Metamorphic zircon U-Pb age of 253 Ma may record the crust-mantle interaction caused by the orogenic root delamination beneath the southwestern Tianshan.展开更多
Abundant occurrences of quartz vein within eclogites in the Dabie-Sulu orogen provide us an opportu- nity to study metamorphic fluid flow during subduction and exhumation of continental crust. It is, however, usually ...Abundant occurrences of quartz vein within eclogites in the Dabie-Sulu orogen provide us an opportu- nity to study metamorphic fluid flow during subduction and exhumation of continental crust. It is, however, usually short of petrological constraints on pressure and tempera- ture of vein formation. This study focuses on kyanite-quartz veins within low-T/high-P eclogite in the Dabie terrane that contain unique polycrystalline aggregates, interpreted as pseudomorphs after porphyroblasts of lawsonite. Coesite pseudomorphs were found for the first time in garnet from eclogite, resulting in a revised estimate of peak P-T condi- tions at 670℃ and 3.3 GPa for the eclogite. This indicates a stability field at graphite/diamond transition, thus upgrading the HP unit to a UHP unit. Neither foliation texture, undulose extinction of quartz nor coesite were observed in quartz veins, although the peak P-T conditions were estimated the same as that in host eclogite in light of thermodynamic calculation based on mineral assemblage in kyanite-quartz veins. Therefore, the formation of the kyanite-quartz veins as well as the breakdown of lawsonite into the kyanite-quartz-zoisite assemblage took place during exhumation subsequent to the peak UHP conditions. In this regard, the continental subduc- tion not only brought the water of water-bearing mineral such as lawsonite into the deep mantle, but also released the water from the mineral during exhumation.展开更多
The sedimentary sequence of the Lower Cambrian is a key interval to reveal the early evolution history of the Earth and there occur widespread cherts worldwide. These cherts possibly carry important information to dec...The sedimentary sequence of the Lower Cambrian is a key interval to reveal the early evolution history of the Earth and there occur widespread cherts worldwide. These cherts possibly carry important information to decipher the breakup process of the Rodinia Continent. Black rock series at the bottom of the Lower Cambrian in the Northern Tarim Basin, China, is composed of black shales interbedded with thin-bedded cherts. Ten chert samples were systematically collected from two outcrops at Xiaoerbulak and Sogatbulak, 8.8 and 7.5 m thick respectively. The cherts were crushed, and were analyzed for trace element and rare earth concentrations. Trace elements such as V, Cu, Zn, U, Pb, Ba, Cd, Ag, Mo, As and Sb are highly enriched, and others such as Rb, Zr, Cs, Hf, Ta, W, Tl, Bi and Th are highly depleted in the cherts. These trace element patterns suggest that the cherts may be of deep crustal origin. The low ratios of Th/U and Rb/Sr further suggest that the cherts are of earth interior sources or received hydrothermal input during their deposition. Chondrite- normalized Eu/Eu* value markedly decreases upward in the section from 5.54 at the lowermost to 0.73 at the top, and NASC-normalized Eu/Eu* value decreases from 8.05 to 1.03. The relatively high Eu/Eu* ratio for the cherts from the northern Tarim Basin is most likely due to a hydrothermal input (e.g., Eu/Eu* ~10). The systematic decrease of Eu/Eu* ratio from the bottom to the top of the section reflects that the hydrothermal input is the largest in the lowermost portion of the section and gradually decreases upward. The chondrite-normalized Ce/Ce* ratio ranges from 0.42 to 0.83, with an average of 0.60. North American Shale Composite (NASC)-normalized Ce/Ce* ratio ranges from 0.42 to 0.79, with an average of 0.57. Negative Ce anomalies are distinct. ΣREEs in the cherts generally increase from 10.50 ppm at the bottom to 35.97 ppm at the top of the sampled section. NASC-normalized (La/Lu) N ratio decreases from 2.72 at the bottom to 0.67 at the top. NASC-normalize展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.40273001,40425002)the EYTP(Grant No.2003-119).
文摘The granulitic xenoliths discovered in the late Cretaceous basaltic rocks from Tuoyun basin, western Xinjiang Province contain the assemblage of Opx + Cpx + Pl ± Grt ± Qtz ± Kfs. Mineral chemistry, petrochemistry and zircon U-Pb ages from the xenoliths have been reported in the paper. Petrogenesis, the lower crustal nature and the mantle-crust interaction reflected by the granulites are discussed as well. Tuoyun granulites are mainly mafic with few intermediate components, and represent the magmatic products underwent granulite-facies metamorphism in lower crustal condition. Equilibrium temperature and the maximum pressure estimates of the granulites are 910 ± 35℃ and 13.5 × 108 Pa respectively, indicating that the crust beneath southwestern Tianshan had the thickness of less than 44 km and high geotherm (e.g. > 80 mW/m2) when the host magma erupted. During their formation, the fractional crystallization of olivine, pyroxene, plagioclase and ilmenite, plagioclase accumulation and the contamination of felsic components or fluid metasomatism processes had happened. Metamorphic zircon U-Pb age of 253 Ma may record the crust-mantle interaction caused by the orogenic root delamination beneath the southwestern Tianshan.
基金supported by the National Natural Science Foundation of China(Grant No.40372034)the Ministry of Science and Technology of China(Grant No.1999075503).
文摘Abundant occurrences of quartz vein within eclogites in the Dabie-Sulu orogen provide us an opportu- nity to study metamorphic fluid flow during subduction and exhumation of continental crust. It is, however, usually short of petrological constraints on pressure and tempera- ture of vein formation. This study focuses on kyanite-quartz veins within low-T/high-P eclogite in the Dabie terrane that contain unique polycrystalline aggregates, interpreted as pseudomorphs after porphyroblasts of lawsonite. Coesite pseudomorphs were found for the first time in garnet from eclogite, resulting in a revised estimate of peak P-T condi- tions at 670℃ and 3.3 GPa for the eclogite. This indicates a stability field at graphite/diamond transition, thus upgrading the HP unit to a UHP unit. Neither foliation texture, undulose extinction of quartz nor coesite were observed in quartz veins, although the peak P-T conditions were estimated the same as that in host eclogite in light of thermodynamic calculation based on mineral assemblage in kyanite-quartz veins. Therefore, the formation of the kyanite-quartz veins as well as the breakdown of lawsonite into the kyanite-quartz-zoisite assemblage took place during exhumation subsequent to the peak UHP conditions. In this regard, the continental subduc- tion not only brought the water of water-bearing mineral such as lawsonite into the deep mantle, but also released the water from the mineral during exhumation.
基金the National NaturalScience Foundation of China(Project Nos.40172042,40472064 , 40228004)the Ministry of Science and Technology of China(Project No.G1999043304) the Special Foundation for Doctor Subjects in China(Project No.200049107).
文摘The sedimentary sequence of the Lower Cambrian is a key interval to reveal the early evolution history of the Earth and there occur widespread cherts worldwide. These cherts possibly carry important information to decipher the breakup process of the Rodinia Continent. Black rock series at the bottom of the Lower Cambrian in the Northern Tarim Basin, China, is composed of black shales interbedded with thin-bedded cherts. Ten chert samples were systematically collected from two outcrops at Xiaoerbulak and Sogatbulak, 8.8 and 7.5 m thick respectively. The cherts were crushed, and were analyzed for trace element and rare earth concentrations. Trace elements such as V, Cu, Zn, U, Pb, Ba, Cd, Ag, Mo, As and Sb are highly enriched, and others such as Rb, Zr, Cs, Hf, Ta, W, Tl, Bi and Th are highly depleted in the cherts. These trace element patterns suggest that the cherts may be of deep crustal origin. The low ratios of Th/U and Rb/Sr further suggest that the cherts are of earth interior sources or received hydrothermal input during their deposition. Chondrite- normalized Eu/Eu* value markedly decreases upward in the section from 5.54 at the lowermost to 0.73 at the top, and NASC-normalized Eu/Eu* value decreases from 8.05 to 1.03. The relatively high Eu/Eu* ratio for the cherts from the northern Tarim Basin is most likely due to a hydrothermal input (e.g., Eu/Eu* ~10). The systematic decrease of Eu/Eu* ratio from the bottom to the top of the section reflects that the hydrothermal input is the largest in the lowermost portion of the section and gradually decreases upward. The chondrite-normalized Ce/Ce* ratio ranges from 0.42 to 0.83, with an average of 0.60. North American Shale Composite (NASC)-normalized Ce/Ce* ratio ranges from 0.42 to 0.79, with an average of 0.57. Negative Ce anomalies are distinct. ΣREEs in the cherts generally increase from 10.50 ppm at the bottom to 35.97 ppm at the top of the sampled section. NASC-normalized (La/Lu) N ratio decreases from 2.72 at the bottom to 0.67 at the top. NASC-normalize