This paper seeks to mark the fruitful collaborative research between scholars in the University of Southampton and Beihang University for last 25 years on structural integrity. Their efforts addressed some important i...This paper seeks to mark the fruitful collaborative research between scholars in the University of Southampton and Beihang University for last 25 years on structural integrity. Their efforts addressed some important issues in structural integrity such as fatigue and fracture behavior,fatigue load spectra, fatigue and fracture lifetimes, reliability-based service period, adhesively bonded composite patch repairs, Plain Woven Fabric(PWF) composites and composite artefacts.New advances in engineering approaches, experimental methods, numerical algorithms and understanding of failure mechanisms relating to structural integrity are highlighted. Probable limits(or drawbacks) are also discussed. This review provides an insight into the general aspects on structural integrity and constitutes a basis for pointers to the further works on structural integrity.展开更多
The corrosion performance of aluminum/steel contact and aluminum/steel FSW joint in 3.5 wt.%NaCl solution were analyzed using potentiostatic tests.The post-corrosion microstructure of the welding joint was characteriz...The corrosion performance of aluminum/steel contact and aluminum/steel FSW joint in 3.5 wt.%NaCl solution were analyzed using potentiostatic tests.The post-corrosion microstructure of the welding joint was characterized by optical microscope(OM),scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).The results showed that the localized corrosion of FSW joint of Al/steel dissimilar metals mainly initiated at the interface transition zone(ITZ).Precipitation of intermetallic compounds(IMCs)and Fe-rich phase particles in ITZ accelerated the corrosion of the FSW joint.This phenomenon has been attributed to distinct corrosion potentials between IMCs and steel,aluminum base metal.The corrosion resistance sequence of IMCs in ITZ is Fe_(3)Al>FeAl>Fe_(2)Al_(5).展开更多
A database of real-world diesel vehicle emission factors, based on type and technology, has been developed following tests on more than 300 diesel vehicles in China using a portable emission measurement system. The da...A database of real-world diesel vehicle emission factors, based on type and technology, has been developed following tests on more than 300 diesel vehicles in China using a portable emission measurement system. The database provides better understanding of diesel vehicle emissions under actual driving conditions. We found that although new regulations have reduced real-world emission levels of diesel trucks and buses significantly for most pollutants in China, NOx emissions have been inadequately controlled by the current standards, especially for diesel buses, because of bad driving conditions in the real world. We also compared the emission factors in the database with those calculated by emission factor models and used in inventory studies. The emission factors derived from COPERT(Computer Programmer to calculate Emissions from Road Transport) and MOBILE may both underestimate real emission factors, whereas the updated COPERT and PART5(Highway Vehicle Particulate Emission Modeling Software) models may overestimate emission factors in China. Real-world measurement results and emission factors used in recent emission inventory studies are inconsistent,which has led to inaccurate estimates of emissions from diesel trucks and buses over recent years. This suggests that emission factors derived from European or US-based models will not truly represent real-world emissions in China. Therefore, it is useful and necessary to conduct systematic real-world measurements of vehicle emissions in China in order to obtain the optimum inputs for emission inventory models.展开更多
Geological body structure is the product of the geological evolution in the time dimension, which is presented in 3D configuration in the natural world. However, many geologists still record and process their geologic...Geological body structure is the product of the geological evolution in the time dimension, which is presented in 3D configuration in the natural world. However, many geologists still record and process their geological data using the 2D or 1D pattern, which results in the loss of a large quantity of spatial data. One of the reasons is that the current methods have limitations on how to express underground geological objects. To analyze and interpret geological models, we present a layer data model to organize different kinds of geological datasets. The data model implemented the unification expression and storage of geological data and geometric models. In addition, it is a method for visualizing large-scaled geological datasets through building multi-resolution geological models rapidly, which can meet the demand of the operation, analysis, and interpretation of 3D geological objects. It proves that our methodology is competent for 3D modeling and self-adaptive visualization of large geological objects and it is a good way to solve the problem of integration and share of geological spatial data.展开更多
Slope protection has always been a major concern in highway construction and later operation.Ecological protection technology is widely used in highway slope,which takes into account functions of protection,ecology,an...Slope protection has always been a major concern in highway construction and later operation.Ecological protection technology is widely used in highway slope,which takes into account functions of protection,ecology,and landscape.Ecological protection technology is mainly to improve the stability of the slope through the combination of supporting structure and plants,and vegetation restoration can reduce the negative impact of highway construction.In this paper,the latest research progress of ecological protection technology was first reviewed to identify the main construction process and types,which revealed the protection mechanism of ecological protection technology.The comprehensive benefits of ecological slope protection technology were analysed from the aspects of air,water circulation,landscape and biodiversity.It has found that ecological protection technology of highway slope mainly forms the atmosphere-plant-soil system.Ecological protection technology of highway slope improved the stability of the slope through the supporting structure and the anchoring effect of plant roots.And the restoration of the surface vegetation on the slope promoted the photosynthesis and transpiration of plants and purifies the air quality along the highway.Ecological protection technology of highway slope could quickly restore the ecological balance,overall landscape and biodiversity of the region.展开更多
Conversion of CO_(2) into high-value products using electrochemical CO_(2) reduction(ECR)technology is an effective way to alleviate global warming and reach carbon neutrality.The oxygen vacancies in heterogenous cata...Conversion of CO_(2) into high-value products using electrochemical CO_(2) reduction(ECR)technology is an effective way to alleviate global warming and reach carbon neutrality.The oxygen vacancies in heterogenous catalysis are generally considered as a powerful method to enhance the performance of ECR by promoting CO_(2) adsorption and activation.However,the extent of defects in oxygen vacancies-activity relation has rarely been studied.Herein,we prepared Cu-Cd bimetallic catalysts with adjustable oxygen defect degree by controlling the amount of cadmium addition.Fourier transform infrared spectroscopy characterization results reveal that the formation of oxygen vacancies is attributed to the asymmetric stretching of Cu-O by the addition of cadmium.Electrochemical results show that the oxygen defect degree can modulate the selectivity of ECR products.A low degree of oxygen defects(CuO)is generally associated with lower product Faraday efficiency(FE_(C2)/FE_(C1)≈114%),but overabundant oxygen vacancies(CuO_(2.625)-CdO_(0.375))are not entirely favorable to improving ECR activity(FE_(C2)/FE_(C1)≈125%)and single selectivity,while an appropriate degree of oxygen vacancies(CuO_(2.75)-CdO_(0.25))can facilitate the ECR process toward single product selective production(FE_(C2)/FE_(C1)≈296%).The theoretical calculation showed that the O vacancy formed on CuO and the interface between CdO and CuO were conducive to enhancing the formation of ^(*)COOH intermediate and promoting the generation of ethylene products.This study provides a new approach and insight into the selective production of single products for future industrial applications of ECR.展开更多
Ground freeze-thaw processes have significant impacts on infiltration,runoff and evapotranspiration.However,there are still critical knowledge gaps in understanding of hydrological processes in permafrost regions,espe...Ground freeze-thaw processes have significant impacts on infiltration,runoff and evapotranspiration.However,there are still critical knowledge gaps in understanding of hydrological processes in permafrost regions,especially of the interactions among permafrost,ecology,and hydrology.In this study,an alpine permafrost basin on the northeastern Qinghai-Tibet Plateau was selected to conduct hydrological and meteorological observations.We analyzed the annual variations in runoff,precipitation,evapotranspiration,and changes in water storage,as well as the mechanisms for runoff gen-eration in the basin from May 2014 to December 2015.The annual flow curve in the basin exhibited peaks both in spring and autumn floods.The high ratio of evapotranspiration to annual precipitation(>1.O)in the investigated wetland is mainly due to the considerably underestimated‘observed'precipitation caused by the wind-induced instrumental error and the neglect of snow sublimation.The stream flow from early May to late October probably came from the lateral discharge of subsurface flow in alpine wetlands.This study can provide data support and validation for hydrological model simulation and prediction,as well as water resource assessment,in the upper Yellow River Basin,especially for the headwater area.The results also provide case support for permafrost hydrology modeling in ungauged or poorly gauged watersheds in the High Mountain Asia.展开更多
Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has b...Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has been widely used for all-sky gamma-ray monitors.There are two major methods for this count distribution localization:χ^(2)minimization method and the Bayesian method.Here we propose a modified Bayesian method that could take advantage of both the accuracy of the Bayesian method and the simplicity of the χ^(2)method.With comprehensive simulations,we find that our Bayesian method with Poisson likelihood is generally more applicable for various bursts than the χ^(2)method,especially for weak bursts.We further proposed a location-spectrum iteration approach based on the Bayesian inference,which could alleviate the problems caused by the spectral difference between the burst and location templates.Our method is very suitable for scenarios with limited computation resources or timesensitive applications,such as in-flight localization software,and low-latency localization for rapidly follow-up observations.展开更多
Arabidopsis thaliana(A, thaliana) has long been a model species for dicotyledon study, and was the first flowering plant to get its genome completed sequenced . Although most wild A. thaliana are collected in Europe...Arabidopsis thaliana(A, thaliana) has long been a model species for dicotyledon study, and was the first flowering plant to get its genome completed sequenced . Although most wild A. thaliana are collected in Europe, several studies have found a rapid A. thaliaria west-east expansion from Central Asia . The Qinghai-Tibet Plateau (QTP) is close to Central Asia and known for its high altitude, unique environments and biodiversity . However, no wild-type A. thaliana had been either discovered or sequenced from QTP. Studies on the A. thaliana populations collected under 2000 m asl have shown that the adaptive variations associated with climate and altitudinal gradients .展开更多
In view of the limited theoretical research on the load model of initial support for horseshoe-shaped prefabrication,this study focuses on the Luochuan Tunnel on the Xi'an-Yan'an newly built railway as the res...In view of the limited theoretical research on the load model of initial support for horseshoe-shaped prefabrication,this study focuses on the Luochuan Tunnel on the Xi'an-Yan'an newly built railway as the research object to explore its load model,load characteristic curve,plastic zone,deformation,and critical thickness.Theoretical research and numerical analysis were conducted.The results indicate that under the same boundary conditions,the ultimate bearing capacity of the prefabricated assembly initial support is higher than that of the shotcrete initial support,resulting in larger ultimate deformation capacity of the prefabricated assembly initial support.Based on numerical calculations,the ultimate deformation and critical thickness of the prefabricated initial lining for single-and double-track railway tunnels are obtained when buried at depths of 200,500,and 900 m in rock masses of classes Ⅲ,Ⅳ,and Ⅴ.展开更多
The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures an...The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures and foundations in permafrost regions. In this study, a novel approach for stabilizing the warm and ice-rich frozen soil with sulphoaluminate cement was proposed based on chemical stabilization. The mechanical behaviors of the stabilized soil, such as strength and stress-strain relationship, were investigated through a series of triaxial compression tests conducted at -1.0℃, and the mechanism of strength variations of the stabilized soil was also explained based on scanning electron microscope test. The investigations indicated that the strength of stabilized soil to resist failure has been improved, and the linear Mohr-Coulomb criteria can accurately reflect the shear strength of stabilized soil under various applied confining pressure. The increase in both curing age and cement mixing ratio were favorable to the growth of cohesion and internal friction angle. More importantly, the strength improvement mechanism of the stabilized soil is attributed to the formation of structural skeleton and the generation of cementitious hydration products within itself. Therefore, the investigations conducted in this study provide valuable references for chemical stabilization of warm and ice-rich frozen ground, thereby providing a basis for in-situ ground improvement for reinforcing warm and ice-rich permafrost foundations by soil-cement column installation.展开更多
The rail transit in sulfate-rich areas faces the combined effects of stray current and salt corrosion;however,the sulfate ion transport and concrete degradation mechanisms under such conditions are still unclear.To ad...The rail transit in sulfate-rich areas faces the combined effects of stray current and salt corrosion;however,the sulfate ion transport and concrete degradation mechanisms under such conditions are still unclear.To address this issue,novel sulfate transport and mesoscale splitting tests were designed,with a focus on considering the differences between the interfacial transition zone(ITZ)and cement matrix.Under the influence of stray current,the ITZ played a pivotal role in regulating the transport and mechanical failure processes of sulfate attack,while the tortuous and blocking effects of aggregates almost disappeared.This phenomenon was termed the“stray current-induced ITZ effect.”The experimental data revealed that the difference in sulfate ion transport attributed to the ITZ ranged from 1.90 to 2.31 times,while the difference in splitting strength ranged from 1.56 to 1.64 times.Through the real-time synchronization of splitting experiments and microsecond-responsive particle image velocimetry(PIV)technology,the mechanical properties were exposed to the consequences of the stray currentinduced ITZ effect.The number of splitting cracks in the concrete increased,rather than along the central axis,which was significantly different from the conditions without stray current and the ideal Brazilian disk test.Furthermore,a sulfate ion mass transfer model that incorporates reactivity and electrodiffusion was meticulously constructed.The embedded finite element calculation exhibited excellent agreement with the experimental results,indicating its reliability and accuracy.Additionally,the stress field was determined utilizing analytical methods,and the mechanism underlying crack propagation was successfully obtained.Compared to the cement matrix,a stray current led to more sulfates,more microstructure degradation,and greater increases in thickness and porosity in the ITZ,which was considered to be the essence of the stray current-induced ITZ effect.展开更多
The clear identification and quantification of the factors affecting groundwater systems is crucial for protecting groundwater resources and ensuring safety in agricultural production.The Lower Yellow River(LYR)is a s...The clear identification and quantification of the factors affecting groundwater systems is crucial for protecting groundwater resources and ensuring safety in agricultural production.The Lower Yellow River(LYR)is a suspended river that replenishes groundwater continuously due to clear differences in the water head,especially in the Xinxiang section.Since its construction,the Xiaolangdi Reservoir has reversed the LYR’s deposition.To accurately determine the factors influencing the groundwater level(GWL),the study area was divided into five subzones based on hydrogeology.A dynamic factor model(DFM),variational mode decomposition(VMD),and a multiple linear regression model were used to identify and quantify the factors influencing the GWL.The impact of the suspended river on the groundwater before and after the construction of the Xiaolangdi Reservoir was examined.The results show that:(1)The rate of decrease in the GWL was 8.53×10^(–4)m/month,and the rate of decrease in the Yellow River water level(RWL)was 4.63×10^(–4)m/month.(2)Mountain front recharge(MFR)(scale=3 months)and precipitation(scale=9 months)were the dominant factors in subzones I and II,accounting for more than 40%of the fluctuation in the GWL.Subzone III was dominated by exploitation(scale=7 months)and precipitation(scale=12months),accounting for 28.43%,and 23.44%of changes in the GWL,respectively.In subzone IV,agricultural irrigation(scale=12 months)was the major factor,accounting for32.47%of GWL changes,while in subzone V,the RWL(scale=12 months)accounted for52.52%of these changes.(3)The Xiaolangdi Reservoir has increased the lateral seepage of the suspended river and altered the inter-annual distribution.The results of this study can provide a valuable reference for controlling groundwater overexploitation and ensuring water supply security.展开更多
To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement a...To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement and shear strain during the active failure of soil with height H and friction angle φ. The test results show that there are 3 stages of soil deformation under retaining wall translation: the initial stage, the expansion stage and the stability stage. The stable sliding surface in the model tests can be considered to be composed of two parts. Within the height range of 0.82 H-1.0 H, it is a plane at an angle of π/4+φ/2 to the horizontal plane. In the height range of 0-0.82 H, it is a curve between a logarithmic spiral and a plane at an angle of π/4+φ/2 to the horizontal. A new method applicable to any sliding surface is proposed for active earth pressure with the consideration of arching effect. The active earth pressure is computed with the actual shape of the slip surface and compared with model test data and with predictions obtained by existing methods. The comparison shows that predictions from the newly proposed method are more consistent with the measured data than the predictions from the other methods.展开更多
Nickel is a heavy metal which has the potential threaten to human's health and attracts public concern recently. The carbonized leaf powder is expected as suitable adsorbent for Ni(II) removal became of the composi...Nickel is a heavy metal which has the potential threaten to human's health and attracts public concern recently. The carbonized leaf powder is expected as suitable adsorbent for Ni(II) removal became of the composition of some beneficial groups. In this work, carbonized leaf powder was evaluated for its adsorption performance towards Ni(II). According to the results, adsorbent component, dosage, initial solute concentration, solution pH, temperature and contact time can significantly affect the efficiency of Ni(II) removal. Sips model fits the test results best, and the adsorption capacity towards Ni(II) is determined around 37.62 mg/g. The thermodynamic behaviors reveal the endothermic and spontaneous nature of the adsorption. The free adsorption energy (fluctuate around 8 kJ/mol) predicted by D-R model indicates that the adsorption capacity originated from both physical and chemical adsorption. Room temperature (15-25 ℃) is suitable for Ni(II) removal as well as low energy consumption for temperature enhancement. Further conclusions about the mechanism of chemical adsorption are obtained through analysis of the FT-IR test and XRD spectra, which indicates that the adsorption process occurs predominantly between amine, carbonate, phosphate and nickel ions.展开更多
It is proposed to build a high-speed railway through the China‒Mongolia‒Russia economic corridor(CMREC)which runs from Beijing to Moscow via Mongolia.However,the frozen ground in this corridor has great impacts on the...It is proposed to build a high-speed railway through the China‒Mongolia‒Russia economic corridor(CMREC)which runs from Beijing to Moscow via Mongolia.However,the frozen ground in this corridor has great impacts on the infrastructure stability,especially under the background of climate warming and permafrost degradation.Based on the Bayesian Network Model(BNM),this study evaluates the suitability for engineering construction in the CMREC,by using 21 factors in five aspects of terrain,climate,ecology,soil,and frozen-ground thermal stability.The results showed that the corridor of Mongolia's Gobi and Inner Mongolia in China is suitable for engineering construction,and the corridor in Amur,Russia near the northern part of Northeast China is also suitable due to cold and stable permafrost overlaying by a thin active layer.However,the corridor near Petropavlovsk in Kazakhstan and Omsk in Russia is not suitable for engineering construction because of low freezing index and ecological vulnerability.Furthermore,the sensitivity analysis of influence factors indicates that the thermal stability of frozen ground has the greatest impact on the suitability of engineering construction.These conclusions can provide a reference basis for the future engineering planning,construction and risk assessment.展开更多
The desorption test was conducted to evaluate the desorption behavior of Pb(Ⅱ)and Cd(Ⅱ)using citric acid.The influential factors that were considered included initial Pb(Ⅱ),Cd(Ⅱ)contamination levels in soil,concen...The desorption test was conducted to evaluate the desorption behavior of Pb(Ⅱ)and Cd(Ⅱ)using citric acid.The influential factors that were considered included initial Pb(Ⅱ),Cd(Ⅱ)contamination levels in soil,concentration of citric acid,reaction time,soil pH value and ionic strength.The test results indicated that the desorption was a rapid reaction(less than 6 h),and the removal percentages of Cd(Ⅱ)and Pb(Ⅱ)increased with the increasing contamination levels,concentration of citric acid and the addition of Na^+,Ca^(2+),Na^+, Cl~– and the chelating of organic ligands.展开更多
The co-contamination of metals and organic pollutants,such as Pb and methyl tert-butyl ether(MTBE),in groundwater,has become a common and major phenomenon in many contaminated sites.This study evaluated the feasibilit...The co-contamination of metals and organic pollutants,such as Pb and methyl tert-butyl ether(MTBE),in groundwater,has become a common and major phenomenon in many contaminated sites.This study evaluated the feasibility of their simultaneous removal with permeable reactive barrier(PRB)packed with mixed zeolites(clinoptilolite and ZSM-5)using fixed-bed column tests and breakthrough curve modeling.The effect of grain size on the permeability of PRB and removal efficacy was also assessed by granular and power clinoptilolite.The replacement of granular clinoptilolite by powder clinoptilolite largely reduced the breakthrough time but increased the saturation time nearly fourfold.The column adsorption capacity of clinoptilolite powders almost tripled that of clinoptilolite granules(130.6mg/g versus 45.3 mg/g)due to higher specific surface areas.The minimum thickness and corresponding longevity of PRB were calculated as 7.12 cm and 321.5 min when 5%of granular clinoptilolite was mixed with 5%ZSM-5 and 90%sand as mixed PRB reactive media compared with 10.86 cm and 1230.2 min for the application of powder clinoptilolite.This study is expected to provide theoretical support and guidance for the practical application of mixed adsorbents in PRBs.展开更多
The precipitated phases in the WNZ,TMAZ,HAZ and BM of the friction stir welding(FSW)joint were observed using the transmission electron microscopy(TEM)and the lattice fringe spacing of the precipitated phases was meas...The precipitated phases in the WNZ,TMAZ,HAZ and BM of the friction stir welding(FSW)joint were observed using the transmission electron microscopy(TEM)and the lattice fringe spacing of the precipitated phases was measured.Combined with X-ray diffraction(XRD),the types of precipitated phases among the joint were confirmed and then the strength mismatch mechanism was revealed.The results show the precipitated phases of 7075 aluminum alloy FSW joint mainly consist of MgZn_(2),AlCuMg and Al_(2)CuMg.The microzone of the joint experienced different thermal cycles,the types and sizes of precipitated phases are different and the strengthening effect is different.The strengthening effect of the AlCuMg and Al_(2)CuMg are better than that of MgZn_(2).The precipitated phase in the WNZ mainly includes AlCuMg and Al_(2)CuMg,as well as the grain size is fine,the microhardness in this zone is pretty high.The number of precipitated phase AlCuMg and Al_(2)CuMg is smaller in the TMAZ and the MgZn_(2)is relatively more,which lead the microhardness decrease.The number of precipitated phase MgZn_(2)is relative larger in the HAZ,as well as the grain coarsening,the microhardness in this zone is lowest of the joint.At the same time,there are the precipitate free zones(PFZ)among the 7075 aluminum alloy FSW joint,which decreases the microhardness of the whole joint to some extent.展开更多
The efficient evacuation of people from dangerous areas is a key objective of emergency management.However,many emergencies give little to no advanced warning,leading to spontaneous evacuation with no time for plannin...The efficient evacuation of people from dangerous areas is a key objective of emergency management.However,many emergencies give little to no advanced warning,leading to spontaneous evacuation with no time for planning or management.For large emergencies,destinations become less certain,with traffic demand imbalanced and concentrated on a few oversaturated routes familiar to evacuees.Ultimately,this leads to rapid congestion and delay on some routes,while others remain barely used,extending clearance times with an accumulating population at risk.In this study we address these issues through incorporating spatio-temporal traffic resilience dynamics into a destination choice model utilizing the available capacity of the overall network.We validate our model through a post-concert egress event.The results suggest that our method can reduce total egress times and average travel time by 20%-43%over the no-guidance condition.Our method can be used to estimate and quantify emergency conditions to optimally guide destinations and routing choice for evacuees and/or autonomously moving vehicles during evacuations.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51375033 and 51875021)
文摘This paper seeks to mark the fruitful collaborative research between scholars in the University of Southampton and Beihang University for last 25 years on structural integrity. Their efforts addressed some important issues in structural integrity such as fatigue and fracture behavior,fatigue load spectra, fatigue and fracture lifetimes, reliability-based service period, adhesively bonded composite patch repairs, Plain Woven Fabric(PWF) composites and composite artefacts.New advances in engineering approaches, experimental methods, numerical algorithms and understanding of failure mechanisms relating to structural integrity are highlighted. Probable limits(or drawbacks) are also discussed. This review provides an insight into the general aspects on structural integrity and constitutes a basis for pointers to the further works on structural integrity.
基金supported by the Natural Science Foundation of Hebei(Grant No.E2019210292)Education Department of Hebei(Grant No.ZD2019102).
文摘The corrosion performance of aluminum/steel contact and aluminum/steel FSW joint in 3.5 wt.%NaCl solution were analyzed using potentiostatic tests.The post-corrosion microstructure of the welding joint was characterized by optical microscope(OM),scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).The results showed that the localized corrosion of FSW joint of Al/steel dissimilar metals mainly initiated at the interface transition zone(ITZ).Precipitation of intermetallic compounds(IMCs)and Fe-rich phase particles in ITZ accelerated the corrosion of the FSW joint.This phenomenon has been attributed to distinct corrosion potentials between IMCs and steel,aluminum base metal.The corrosion resistance sequence of IMCs in ITZ is Fe_(3)Al>FeAl>Fe_(2)Al_(5).
基金supported by the National Science Foundation of China (Nos. 41275124, 51278272)the Beijing Natural Science Foundation (8142011)+1 种基金the Ministry of Environmental Protection of China (No. 201209007)the International Council on Clean Transportation (ICCT) research program
文摘A database of real-world diesel vehicle emission factors, based on type and technology, has been developed following tests on more than 300 diesel vehicles in China using a portable emission measurement system. The database provides better understanding of diesel vehicle emissions under actual driving conditions. We found that although new regulations have reduced real-world emission levels of diesel trucks and buses significantly for most pollutants in China, NOx emissions have been inadequately controlled by the current standards, especially for diesel buses, because of bad driving conditions in the real world. We also compared the emission factors in the database with those calculated by emission factor models and used in inventory studies. The emission factors derived from COPERT(Computer Programmer to calculate Emissions from Road Transport) and MOBILE may both underestimate real emission factors, whereas the updated COPERT and PART5(Highway Vehicle Particulate Emission Modeling Software) models may overestimate emission factors in China. Real-world measurement results and emission factors used in recent emission inventory studies are inconsistent,which has led to inaccurate estimates of emissions from diesel trucks and buses over recent years. This suggests that emission factors derived from European or US-based models will not truly represent real-world emissions in China. Therefore, it is useful and necessary to conduct systematic real-world measurements of vehicle emissions in China in order to obtain the optimum inputs for emission inventory models.
基金Supported by National High Technology Research and Development Program of China (Grant Nos. 2006AA12Z220, 2006AA12Z114, 2007AA12Z226)Open Fund of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (Grant No. WKL(06)0304)
文摘Geological body structure is the product of the geological evolution in the time dimension, which is presented in 3D configuration in the natural world. However, many geologists still record and process their geological data using the 2D or 1D pattern, which results in the loss of a large quantity of spatial data. One of the reasons is that the current methods have limitations on how to express underground geological objects. To analyze and interpret geological models, we present a layer data model to organize different kinds of geological datasets. The data model implemented the unification expression and storage of geological data and geometric models. In addition, it is a method for visualizing large-scaled geological datasets through building multi-resolution geological models rapidly, which can meet the demand of the operation, analysis, and interpretation of 3D geological objects. It proves that our methodology is competent for 3D modeling and self-adaptive visualization of large geological objects and it is a good way to solve the problem of integration and share of geological spatial data.
基金funding from Projects(51838001,51878070,51908073 and 51908069)the National Natural Science Foundation of China+1 种基金Project(2019SK2171)the Special Fund for the Construction of Innovative Provinces in Hunan,China.
文摘Slope protection has always been a major concern in highway construction and later operation.Ecological protection technology is widely used in highway slope,which takes into account functions of protection,ecology,and landscape.Ecological protection technology is mainly to improve the stability of the slope through the combination of supporting structure and plants,and vegetation restoration can reduce the negative impact of highway construction.In this paper,the latest research progress of ecological protection technology was first reviewed to identify the main construction process and types,which revealed the protection mechanism of ecological protection technology.The comprehensive benefits of ecological slope protection technology were analysed from the aspects of air,water circulation,landscape and biodiversity.It has found that ecological protection technology of highway slope mainly forms the atmosphere-plant-soil system.Ecological protection technology of highway slope improved the stability of the slope through the supporting structure and the anchoring effect of plant roots.And the restoration of the surface vegetation on the slope promoted the photosynthesis and transpiration of plants and purifies the air quality along the highway.Ecological protection technology of highway slope could quickly restore the ecological balance,overall landscape and biodiversity of the region.
基金funded by the National Natural Science Foundation of Zhejiang Province(Nos.LQ21B030007 and LTGS23B030002)“Leading Goose”R&D Program of Zhejiang(No.2023C01191)+2 种基金the National Natural Science Foundation of China(No.22005269)Science and Technological program of Ningbo(No.2021S136)The Open Research Subject of Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control(No.2022Z02)。
文摘Conversion of CO_(2) into high-value products using electrochemical CO_(2) reduction(ECR)technology is an effective way to alleviate global warming and reach carbon neutrality.The oxygen vacancies in heterogenous catalysis are generally considered as a powerful method to enhance the performance of ECR by promoting CO_(2) adsorption and activation.However,the extent of defects in oxygen vacancies-activity relation has rarely been studied.Herein,we prepared Cu-Cd bimetallic catalysts with adjustable oxygen defect degree by controlling the amount of cadmium addition.Fourier transform infrared spectroscopy characterization results reveal that the formation of oxygen vacancies is attributed to the asymmetric stretching of Cu-O by the addition of cadmium.Electrochemical results show that the oxygen defect degree can modulate the selectivity of ECR products.A low degree of oxygen defects(CuO)is generally associated with lower product Faraday efficiency(FE_(C2)/FE_(C1)≈114%),but overabundant oxygen vacancies(CuO_(2.625)-CdO_(0.375))are not entirely favorable to improving ECR activity(FE_(C2)/FE_(C1)≈125%)and single selectivity,while an appropriate degree of oxygen vacancies(CuO_(2.75)-CdO_(0.25))can facilitate the ECR process toward single product selective production(FE_(C2)/FE_(C1)≈296%).The theoretical calculation showed that the O vacancy formed on CuO and the interface between CdO and CuO were conducive to enhancing the formation of ^(*)COOH intermediate and promoting the generation of ethylene products.This study provides a new approach and insight into the selective production of single products for future industrial applications of ECR.
基金supported by the Natural Science Foundation of China(41971091)Autonomous Province of Bozen/Bolzano-Department for Innovation,Research and University in the frame of the International Mobility for Researchers Programme(13585/2023).
文摘Ground freeze-thaw processes have significant impacts on infiltration,runoff and evapotranspiration.However,there are still critical knowledge gaps in understanding of hydrological processes in permafrost regions,especially of the interactions among permafrost,ecology,and hydrology.In this study,an alpine permafrost basin on the northeastern Qinghai-Tibet Plateau was selected to conduct hydrological and meteorological observations.We analyzed the annual variations in runoff,precipitation,evapotranspiration,and changes in water storage,as well as the mechanisms for runoff gen-eration in the basin from May 2014 to December 2015.The annual flow curve in the basin exhibited peaks both in spring and autumn floods.The high ratio of evapotranspiration to annual precipitation(>1.O)in the investigated wetland is mainly due to the considerably underestimated‘observed'precipitation caused by the wind-induced instrumental error and the neglect of snow sublimation.The stream flow from early May to late October probably came from the lateral discharge of subsurface flow in alpine wetlands.This study can provide data support and validation for hydrological model simulation and prediction,as well as water resource assessment,in the upper Yellow River Basin,especially for the headwater area.The results also provide case support for permafrost hydrology modeling in ungauged or poorly gauged watersheds in the High Mountain Asia.
基金supported by the National Key R&D Program of China(2021YFA0718500)support from the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(grant Nos.XDA15360102,XDA15360300,XDA15052700 and E02212A02S)+1 种基金the National Natural Science Foundation of China(grant Nos.12173038 and U2038106)the National HEP Data Center(grant No.E029S2S1)。
文摘Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has been widely used for all-sky gamma-ray monitors.There are two major methods for this count distribution localization:χ^(2)minimization method and the Bayesian method.Here we propose a modified Bayesian method that could take advantage of both the accuracy of the Bayesian method and the simplicity of the χ^(2)method.With comprehensive simulations,we find that our Bayesian method with Poisson likelihood is generally more applicable for various bursts than the χ^(2)method,especially for weak bursts.We further proposed a location-spectrum iteration approach based on the Bayesian inference,which could alleviate the problems caused by the spectral difference between the burst and location templates.Our method is very suitable for scenarios with limited computation resources or timesensitive applications,such as in-flight localization software,and low-latency localization for rapidly follow-up observations.
基金supported by the National Natural Science Foundation of China (91131901)the specimen platform of China (teaching specimens sub-platform) and PSCIRT project
文摘Arabidopsis thaliana(A, thaliana) has long been a model species for dicotyledon study, and was the first flowering plant to get its genome completed sequenced . Although most wild A. thaliana are collected in Europe, several studies have found a rapid A. thaliaria west-east expansion from Central Asia . The Qinghai-Tibet Plateau (QTP) is close to Central Asia and known for its high altitude, unique environments and biodiversity . However, no wild-type A. thaliana had been either discovered or sequenced from QTP. Studies on the A. thaliana populations collected under 2000 m asl have shown that the adaptive variations associated with climate and altitudinal gradients .
基金Research Project of China Railway Engineering Equipment Group Co.,Ltd.,Grant/Award Number:Equipment Research Cooperation 2019-14Postdoctoral Science Fund,Grant/Award Number:043201027。
文摘In view of the limited theoretical research on the load model of initial support for horseshoe-shaped prefabrication,this study focuses on the Luochuan Tunnel on the Xi'an-Yan'an newly built railway as the research object to explore its load model,load characteristic curve,plastic zone,deformation,and critical thickness.Theoretical research and numerical analysis were conducted.The results indicate that under the same boundary conditions,the ultimate bearing capacity of the prefabricated assembly initial support is higher than that of the shotcrete initial support,resulting in larger ultimate deformation capacity of the prefabricated assembly initial support.Based on numerical calculations,the ultimate deformation and critical thickness of the prefabricated initial lining for single-and double-track railway tunnels are obtained when buried at depths of 200,500,and 900 m in rock masses of classes Ⅲ,Ⅳ,and Ⅴ.
基金supported by the National Natural Science Foundation of China (No. 41471062, No. 41971085, No. 41971086)。
文摘The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures and foundations in permafrost regions. In this study, a novel approach for stabilizing the warm and ice-rich frozen soil with sulphoaluminate cement was proposed based on chemical stabilization. The mechanical behaviors of the stabilized soil, such as strength and stress-strain relationship, were investigated through a series of triaxial compression tests conducted at -1.0℃, and the mechanism of strength variations of the stabilized soil was also explained based on scanning electron microscope test. The investigations indicated that the strength of stabilized soil to resist failure has been improved, and the linear Mohr-Coulomb criteria can accurately reflect the shear strength of stabilized soil under various applied confining pressure. The increase in both curing age and cement mixing ratio were favorable to the growth of cohesion and internal friction angle. More importantly, the strength improvement mechanism of the stabilized soil is attributed to the formation of structural skeleton and the generation of cementitious hydration products within itself. Therefore, the investigations conducted in this study provide valuable references for chemical stabilization of warm and ice-rich frozen ground, thereby providing a basis for in-situ ground improvement for reinforcing warm and ice-rich permafrost foundations by soil-cement column installation.
基金supported by the State Major Program of National Natural Science Foundation of China(52090082)the National Key Research and Development Program of China(2022YFB2602200)the National Natural Science Foundation of China(52178423 and 52378398).
文摘The rail transit in sulfate-rich areas faces the combined effects of stray current and salt corrosion;however,the sulfate ion transport and concrete degradation mechanisms under such conditions are still unclear.To address this issue,novel sulfate transport and mesoscale splitting tests were designed,with a focus on considering the differences between the interfacial transition zone(ITZ)and cement matrix.Under the influence of stray current,the ITZ played a pivotal role in regulating the transport and mechanical failure processes of sulfate attack,while the tortuous and blocking effects of aggregates almost disappeared.This phenomenon was termed the“stray current-induced ITZ effect.”The experimental data revealed that the difference in sulfate ion transport attributed to the ITZ ranged from 1.90 to 2.31 times,while the difference in splitting strength ranged from 1.56 to 1.64 times.Through the real-time synchronization of splitting experiments and microsecond-responsive particle image velocimetry(PIV)technology,the mechanical properties were exposed to the consequences of the stray currentinduced ITZ effect.The number of splitting cracks in the concrete increased,rather than along the central axis,which was significantly different from the conditions without stray current and the ideal Brazilian disk test.Furthermore,a sulfate ion mass transfer model that incorporates reactivity and electrodiffusion was meticulously constructed.The embedded finite element calculation exhibited excellent agreement with the experimental results,indicating its reliability and accuracy.Additionally,the stress field was determined utilizing analytical methods,and the mechanism underlying crack propagation was successfully obtained.Compared to the cement matrix,a stray current led to more sulfates,more microstructure degradation,and greater increases in thickness and porosity in the ITZ,which was considered to be the essence of the stray current-induced ITZ effect.
基金The Foundation of High-level Talents of Zhengzhou University,No.13432340370,No.134-32340364,No.135-32340122Project of the Ecological Environment Monitoring and Safety Center of Henan Province,No.SJCAQ-HT-2023-036。
文摘The clear identification and quantification of the factors affecting groundwater systems is crucial for protecting groundwater resources and ensuring safety in agricultural production.The Lower Yellow River(LYR)is a suspended river that replenishes groundwater continuously due to clear differences in the water head,especially in the Xinxiang section.Since its construction,the Xiaolangdi Reservoir has reversed the LYR’s deposition.To accurately determine the factors influencing the groundwater level(GWL),the study area was divided into five subzones based on hydrogeology.A dynamic factor model(DFM),variational mode decomposition(VMD),and a multiple linear regression model were used to identify and quantify the factors influencing the GWL.The impact of the suspended river on the groundwater before and after the construction of the Xiaolangdi Reservoir was examined.The results show that:(1)The rate of decrease in the GWL was 8.53×10^(–4)m/month,and the rate of decrease in the Yellow River water level(RWL)was 4.63×10^(–4)m/month.(2)Mountain front recharge(MFR)(scale=3 months)and precipitation(scale=9 months)were the dominant factors in subzones I and II,accounting for more than 40%of the fluctuation in the GWL.Subzone III was dominated by exploitation(scale=7 months)and precipitation(scale=12months),accounting for 28.43%,and 23.44%of changes in the GWL,respectively.In subzone IV,agricultural irrigation(scale=12 months)was the major factor,accounting for32.47%of GWL changes,while in subzone V,the RWL(scale=12 months)accounted for52.52%of these changes.(3)The Xiaolangdi Reservoir has increased the lateral seepage of the suspended river and altered the inter-annual distribution.The results of this study can provide a valuable reference for controlling groundwater overexploitation and ensuring water supply security.
基金Projects(51978084, 51678073) supported by the National Natural Science Foundation of ChinaProject(2020JJ4605) supported by the Natural Science Foundation of Hunan Province, ChinaProject(2019IC13) supported by the International Cooperation and Development Project of Double First-Class Scientific Research in Changsha University of Science & Technology, China。
文摘To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement and shear strain during the active failure of soil with height H and friction angle φ. The test results show that there are 3 stages of soil deformation under retaining wall translation: the initial stage, the expansion stage and the stability stage. The stable sliding surface in the model tests can be considered to be composed of two parts. Within the height range of 0.82 H-1.0 H, it is a plane at an angle of π/4+φ/2 to the horizontal plane. In the height range of 0-0.82 H, it is a curve between a logarithmic spiral and a plane at an angle of π/4+φ/2 to the horizontal. A new method applicable to any sliding surface is proposed for active earth pressure with the consideration of arching effect. The active earth pressure is computed with the actual shape of the slip surface and compared with model test data and with predictions obtained by existing methods. The comparison shows that predictions from the newly proposed method are more consistent with the measured data than the predictions from the other methods.
基金Projects(5117916851308310)supported by the National Natural Science Foundation of China+1 种基金Project(LQ13E080007)supported by Zhejiang Provincial Natural Science Foundation,ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Jiangsu Province,China
文摘Nickel is a heavy metal which has the potential threaten to human's health and attracts public concern recently. The carbonized leaf powder is expected as suitable adsorbent for Ni(II) removal became of the composition of some beneficial groups. In this work, carbonized leaf powder was evaluated for its adsorption performance towards Ni(II). According to the results, adsorbent component, dosage, initial solute concentration, solution pH, temperature and contact time can significantly affect the efficiency of Ni(II) removal. Sips model fits the test results best, and the adsorption capacity towards Ni(II) is determined around 37.62 mg/g. The thermodynamic behaviors reveal the endothermic and spontaneous nature of the adsorption. The free adsorption energy (fluctuate around 8 kJ/mol) predicted by D-R model indicates that the adsorption capacity originated from both physical and chemical adsorption. Room temperature (15-25 ℃) is suitable for Ni(II) removal as well as low energy consumption for temperature enhancement. Further conclusions about the mechanism of chemical adsorption are obtained through analysis of the FT-IR test and XRD spectra, which indicates that the adsorption process occurs predominantly between amine, carbonate, phosphate and nickel ions.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA19070504)the National Natural Science Foundation of China(42176224)+1 种基金the State Key Laboratory of Frozen Soil Engineering,Northwest Institute of EcoEnvironment and Resources,Chinese Academy Sciences(SKLFSE202014)the Young Doctoral Fund of Higher Education of Gansu(2022QB-141).
文摘It is proposed to build a high-speed railway through the China‒Mongolia‒Russia economic corridor(CMREC)which runs from Beijing to Moscow via Mongolia.However,the frozen ground in this corridor has great impacts on the infrastructure stability,especially under the background of climate warming and permafrost degradation.Based on the Bayesian Network Model(BNM),this study evaluates the suitability for engineering construction in the CMREC,by using 21 factors in five aspects of terrain,climate,ecology,soil,and frozen-ground thermal stability.The results showed that the corridor of Mongolia's Gobi and Inner Mongolia in China is suitable for engineering construction,and the corridor in Amur,Russia near the northern part of Northeast China is also suitable due to cold and stable permafrost overlaying by a thin active layer.However,the corridor near Petropavlovsk in Kazakhstan and Omsk in Russia is not suitable for engineering construction because of low freezing index and ecological vulnerability.Furthermore,the sensitivity analysis of influence factors indicates that the thermal stability of frozen ground has the greatest impact on the suitability of engineering construction.These conclusions can provide a reference basis for the future engineering planning,construction and risk assessment.
基金Projects(51708377,51678311)supported by the National Natural Science Foundation of ChinaProject(BK20170339)supported by the Natural Science Foundation of Jiangsu Province,China+6 种基金Project(2016M591756)supported by the China Postdoctoral Science FoundationProject(17KJB560008)supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province,ChinaProject(1601175C)supported by the Jiangsu Planned Projects for Postdoctoral Research Funds,ChinaProject(2016ZD18)supported by the Jiangsu Provincial Department of Housing and Urban-Rural Development,ChinaProject(2016T05)supported by the Jiangsu Provincial Transport Bureau,ChinaProject(2017A610304)supported by the Natural Science Foundation of Ningbo City,ChinaProject supported by the Bureau of Housing and Urban-Rural Development of Suzhou,China
文摘The desorption test was conducted to evaluate the desorption behavior of Pb(Ⅱ)and Cd(Ⅱ)using citric acid.The influential factors that were considered included initial Pb(Ⅱ),Cd(Ⅱ)contamination levels in soil,concentration of citric acid,reaction time,soil pH value and ionic strength.The test results indicated that the desorption was a rapid reaction(less than 6 h),and the removal percentages of Cd(Ⅱ)and Pb(Ⅱ)increased with the increasing contamination levels,concentration of citric acid and the addition of Na^+,Ca^(2+),Na^+, Cl~– and the chelating of organic ligands.
基金supported by a China Scholarship Council(CSC)Ph.D.studentship and the National Key R&D Program of China(No.2020YFC1808201)。
文摘The co-contamination of metals and organic pollutants,such as Pb and methyl tert-butyl ether(MTBE),in groundwater,has become a common and major phenomenon in many contaminated sites.This study evaluated the feasibility of their simultaneous removal with permeable reactive barrier(PRB)packed with mixed zeolites(clinoptilolite and ZSM-5)using fixed-bed column tests and breakthrough curve modeling.The effect of grain size on the permeability of PRB and removal efficacy was also assessed by granular and power clinoptilolite.The replacement of granular clinoptilolite by powder clinoptilolite largely reduced the breakthrough time but increased the saturation time nearly fourfold.The column adsorption capacity of clinoptilolite powders almost tripled that of clinoptilolite granules(130.6mg/g versus 45.3 mg/g)due to higher specific surface areas.The minimum thickness and corresponding longevity of PRB were calculated as 7.12 cm and 321.5 min when 5%of granular clinoptilolite was mixed with 5%ZSM-5 and 90%sand as mixed PRB reactive media compared with 10.86 cm and 1230.2 min for the application of powder clinoptilolite.This study is expected to provide theoretical support and guidance for the practical application of mixed adsorbents in PRBs.
基金supported by the Natural Science Foundation of Hebei(Grant No.E2012210001)Natural Science Foundation of Jiangsu(Grant No.BK20141181)。
文摘The precipitated phases in the WNZ,TMAZ,HAZ and BM of the friction stir welding(FSW)joint were observed using the transmission electron microscopy(TEM)and the lattice fringe spacing of the precipitated phases was measured.Combined with X-ray diffraction(XRD),the types of precipitated phases among the joint were confirmed and then the strength mismatch mechanism was revealed.The results show the precipitated phases of 7075 aluminum alloy FSW joint mainly consist of MgZn_(2),AlCuMg and Al_(2)CuMg.The microzone of the joint experienced different thermal cycles,the types and sizes of precipitated phases are different and the strengthening effect is different.The strengthening effect of the AlCuMg and Al_(2)CuMg are better than that of MgZn_(2).The precipitated phase in the WNZ mainly includes AlCuMg and Al_(2)CuMg,as well as the grain size is fine,the microhardness in this zone is pretty high.The number of precipitated phase AlCuMg and Al_(2)CuMg is smaller in the TMAZ and the MgZn_(2)is relatively more,which lead the microhardness decrease.The number of precipitated phase MgZn_(2)is relative larger in the HAZ,as well as the grain coarsening,the microhardness in this zone is lowest of the joint.At the same time,there are the precipitate free zones(PFZ)among the 7075 aluminum alloy FSW joint,which decreases the microhardness of the whole joint to some extent.
基金support of National Natural Science Foundation of China(Grant#.61773035,71822101,71771009,71890973/71890970)
文摘The efficient evacuation of people from dangerous areas is a key objective of emergency management.However,many emergencies give little to no advanced warning,leading to spontaneous evacuation with no time for planning or management.For large emergencies,destinations become less certain,with traffic demand imbalanced and concentrated on a few oversaturated routes familiar to evacuees.Ultimately,this leads to rapid congestion and delay on some routes,while others remain barely used,extending clearance times with an accumulating population at risk.In this study we address these issues through incorporating spatio-temporal traffic resilience dynamics into a destination choice model utilizing the available capacity of the overall network.We validate our model through a post-concert egress event.The results suggest that our method can reduce total egress times and average travel time by 20%-43%over the no-guidance condition.Our method can be used to estimate and quantify emergency conditions to optimally guide destinations and routing choice for evacuees and/or autonomously moving vehicles during evacuations.